

ESTUDIO SOBRE LA CALIDAD QUÍMICA DE LAS AGUAS DE LA MASA DE AGUA SUBTERRÁNEA "SIERRA DE ALTOMIRA (041.001)"

Convenio específico de colaboración entre la Comunidad de Usuarios de Aguas Subterráneas de La Sierra de Altomira y el Instituto Geológico y Minero de España, para el apoyo técnico en materia de infraestructura hidrogeológica y aguas subterráneas. 2012-2015

ESTUDIO SOBRE LA CALIDAD QUÍMICA DE LAS AGUAS DE LA MASA DE AGUA SUBTERRÁNEA "SIERRA DE ALTOMIRA (041.001)"

Elaborado por:

Jose Antonio Domínguez Sánchez

Leticia Vega Martín

Miguel Mejías Moreno

Rafael Ochando Jiménez

INDICE

1.	INTRODUCCIÓN Y OBJETIVOS	1
2.	ÁMBITO ADMINISTRATIVO	1
3.	ENCUADRE FÍSICO-CLIMÁTICO DEL ÁREA DE ESTUDIO	4
4.	ENCUADRE HIDROGEOLÓGICO DEL ÁREA DE ESTUDIO	7
4.1.	FORMACIONES ACUÍFERAS	7
5.	METODOLOGÍA DE MUESTREO	9
6.	RED DE PUNTOS DE MUESTREO DE CALIDAD EN LA MASB	
	SIERRA DE ALTOMIRA	9
6.1.	DATOS ANALIZADOS	11
6.2.	REPRESENTACIÓN DE LOS RESULTADOS	12
7.	ANÁLISIS HIDROQUÍMICO	15
	FACIES HIDROQUÍMICAS	19
8.1.	ESTUDIO CONJUNTO DE LAS MUESTRAS POR CAMPAÑAS	20
8.2.	ESTUDIO INDIVIDUALIZADO DE LAS MUESTRAS	24
8.3.	ESTUDIO DE LAS MUESTRAS POR ACUÍFEROS	38
8.4.	ESTUDIO ZONAL DE LAS MUESTRAS	47
9.	ESTUDIO ELEMENTAL	51
9.1.	ESTUDIO ELEMENTAL INDIVIDUALIZADO DE LAS MUESTRAS	53
9.2.	ESTUDIO ZONAL DE LAS MUESTRAS	60
10.	CALIDAD DE LAS AGUAS DE ABASTECIMIENTO EN LA MASb	
	SIERRA DE ALTOMIRA	65
10.1	1. CALIDAD GENERAL DE LAS AGUAS DE ABASTECIMEINTO I	DE
	LA MASb SIERRA DE ALTOMIRA	65
10.2	2. CONTENIDO EN NITRATOS EN LAS AGUAS DE	
	ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA	73
10.3	3. CONTENIDO EN SULFATOS EN LAS AGUAS DE	
	ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA	75
10.4	4. CONDUCTIVIDAD ELÉCTRICA EN LAS AGUAS DE	
	ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA	77
10.5	5. CONTENIDO EN ELEMENTOS PATÓGENOS EN LAS AGUAS I	ЭE
	ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA	81
11.	RESUMEN Y CONCLUSIONES	83
12.	BIBLIOGRAFÍA	89

- ANEXO I: RED DE CALIDAD ESTABLECIDA POR EL IGME EN LA MASB SIERRA DE ALTOMIRA
- ANEXO II: RESULTADOS ANALÍTICOS FEBRERO DE 2014
- ANEXO III: RESULTADOS ANALÍTICOS OCTUBRE DE 2014
- ANEXO IV: ANÁLISIS QUÍMICOS DE LAS AGUAS DE ABASTECIMIENTO

INDICE DE FIGURAS

- Figura 1. Límites de las divisiones hidrológicas históricas de la actual Masa de Agua Subterránea Sierra de Altomira (041.001)
- Figura 2. Estaciones climáticas
- Figura 3 Formaciones acuíferas en la MASb Sierra de Altomira
- Figura 4. Mapa geológico de la MASb Sierra de Altomira
- Figura 5 Material empleado en la toma de muestras de agua
- Figura 6. Ejemplo de diagrama de Schoeller-Berkaloff
- Figura 7. Ejemplo de diagrama de Piper
- Figura 8. Triángulos en los que se representa la concentración en meq/L de cationes (triángulo izquierdo) y aniones (triángulo derecho) en un diagrama de Piper. En la figura se representa la siguiente concentración iónica: 62% rNa+rK, 22% rMg, 16% rCa (aniones) y 17% rCi, 41% rCO₃+rHCO₃ y 42% rSO₄
- Figura 9. Re presentación de la muestra en el romboedro central
- Figura 10. Clasificación mediante el diagrama de Piper de los distintos tipos de aguas
- Figura 11. Esquema de los principales procesos modificadores de la composición de las aguas dentro del ciclo hidrológico. MO: materia orgánica. (Extraído de Hidrogeología. Conceptos básicos de hidrogeología subterránea. 2009)
- Figura 12. Representación de las muestras de aguas tomadas en febrero de 2014 mediante diagrama de Piper
- Figura 13. Representación de las muestras de aguas tomadas en febrero de 2014 mediante diagrama de Schoeller-Berkaloff
- Figura 14. Representación de las muestras de aguas tomadas en octubre de 2014 mediante diagrama de Piper
- Figura 15. Representación de las muestras de aguas tomadas en octubre de 2014 mediante diagrama de Schoeller-Berkaloff
- Figura 16. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 212640004
- Figura 17. Gráficos de Piper y Schoeller-Berkaloff de la muestras de febrero de 2014 del punto 212770001
- Figura 18. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 212820001
- Figura 19. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 212830006

- Figura 20. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222580011
- Figura 21. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222580012
- Figura 22. Gráficos de Piper y Schoeller-Berkaloff de la muestra de febrero de 2014 del punto 222620003
- Figura 23. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222640010
- Figura 24. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222770003
- Figura 25. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222810007
- Figura 26. Gráficos de Piper y Schoeller-Berkaloff de la muestra de febrero de 2014 del punto 222830001
- Figura 27. Gráficos de Piper y Schoeller-Berkaloff de la muestra de octubre de 2014 del punto 232720019
- Figura 28. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto Nacimiento del río Saona
- Figura 29. Gráficos de Piper y Schoeller-Berkaloff de la muestra de octubre de 2014 del punto Pozo Marqués
- Figura 30. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de los acuíferos terciarios
- Figura 31. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de los acuíferos terciarios
- Figura 32. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de los acuíferos cretácicos
- Figura 33. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de los acuíferos cretácicos
- Figura 34. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de los acuíferos jurásicos
- Figura 35. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de los acuíferos jurásicos
- Figura 36. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de aguas mezcla de los acuíferos terciarios y cretácicos
- Figura 37. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de aguas mezcla de los acuíferos terciarios y cretácicos
- Figura 38. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de aguas mezcla de los acuíferos cretácicos y jurásicos

Figura 39. Mapa de facies hidroquímicas

Figura 40. Contenido en nitratos de las aguas de la MASb Sierra de Altomira (campañas de febrero y octubre de 2014)

Figura 41. Contenido en sulfatos de las aguas de la MASb Sierra de Altomira (campañas de febrero y octubre de 2014)

Figura 42. Conductividad eléctrica de las aguas de la MASb Sierra de Altomira (campañas de febrero y octubre de 2014)

Figura 43. Parte C del anexo I del Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano

Figura 44. Aguas de abastecimiento de la zona de estudio (calificación porcentual)

Figura 45. Elementos contaminantes de las aguas de abastecimiento calificadas como NO APTAS en la zona de estudio

Figura 46. Aptitud de las aguas de abastecimiento de los municipios de la MASb Sierra de Altomira

Figura 47. Contenido en nitratos en las aguas de abastecimiento en la MASb Sierra de Altomira

Figura 48. Contenido en sulfatos en las aguas de abastecimiento en la MASb Sierra de Altomira

Figura 49. Valores de conductividad eléctrica en las aguas de abastecimiento de la MASb Sierra de Altomira

Figura 50. Conductividad eléctrica en las aguas de abastecimiento en la MASb Sierra de Altomira

Figura 51. Contenido en elementos patógenos en las aguas de abastecimiento en la MASb Sierra de Altomira

INDICE DE TABLAS

- Tabla 1. Estaciones climatológicas en el entorno del área de estudio y valores de precipitación máxima, mínima y media del periodo de registro 1960-2013
- Tabla 2. Puntos de muestreo de calidad de las aguas subterráneas en la MASb Sierra de Altomira
- Tabla 3. Medidas de caudal en la red foronómica de la MASb Sierra de Altomira. Años 2009 y 2012
- Tabla 4. Concentraciones típicas del agua de lluvia, dulce y del mar y posibles orígenes de su contenido elemental
- Tabla 5. Facies hidroquímicas de las muestras de aguas de acuíferos terciarios
- Tabla 6. Facies hidroquímicas de las muestras de aguas de acuíferos cretácicos
- Tabla 7. Facies hidroquímicas de las muestras de aguas del acuífero Jurásico
- Tabla 8. Facies hidroquímicas de las muestras de aguas mezcla de niveles terciarios y cretácicos
- Tabla 9. Facies hidroquímicas de las muestras de aguas mezcla de niveles cretácicos y jurásicos
- Tabla 10. Facies hidroquímicas de las muestras del sector acuífero suroriental
- Tabla 11. Facies hidroquímicas de las muestras del sector acuífero central
- Tabla 12. Facies hidroquímicas de las muestras del sector acuífero suroccidental
- Tabla 13. Contenidos elementales de las muestras de la red de observación de la calidad de las aguas subterráneas establecida por el IGME en la MASb Sierra de Altomira
- Tabla 14. Resultados analíticos del punto de observación 212640004 (campañas de febrero y octubre de 2014)
- Tabla 15. Resultados analíticos del punto de observación 212770001 (campaña de febrero de 2014)
- Tabla 16. Resultados analíticos del punto de observación 212820001 (campañas de febrero y octubre de 2014)
- Tabla 17. Resultados analíticos del punto de observación 212830006 (campañas de febrero y octubre de 2014)
- Tabla 18. Resultados analíticos del punto de observación 222580011 (campañas de febrero y octubre de 2014
- Tabla 19. Resultados analíticos del punto de observación 222580012 (campañas de febrero y octubre de 2014)
- Tabla 20. Resultados analíticos del punto de observación 222620003 (campaña de febrero de 2014)
- Tabla 21. Resultados analíticos del punto de observación 222640010 (campañas de febrero y octubre de 2014)
- Tabla 22. Resultados analíticos del punto de observación 222770003 (campañas de febrero y octubre de 2014

- Tabla 23. Resultados analíticos del punto de observación 222810007 (campañas de febrero y octubre de 2014)
- Tabla 24. Resultados analíticos del punto de observación 222830001 (campaña de febrero de 2014)
- Tabla 25. Resultados analíticos del punto de observación 232720019 (campaña de octubre de 2014)
- Tabla 26. Resultados analíticos del punto de observación nacimiento del río Saona (campañas de febrero y octubre de 2014)
- Tabla 27. Resultados analíticos del punto de observación pozo Marqués (campaña de octubre de 2014)
- Tabla 28. Calificación de las aguas de abastecimiento humanos de los municipios del área de estudio según el Reglamento Técnico Sanitario (Real Decreto 140/2003, de 7 de febrero)
- Tabla 29. Municipios con un contenido en nitritos por encima del límite establecido para aguas de consumo humano
- Tabla 30. Contenido en sulfatos de las aguas de abastecimiento de la MASb Sierra de Altomira
- Tabla 31. Conductividad eléctrica en las aguas de abastecimiento de la MASb Sierra de Altomira
- Tabla 32. Municipios de la MAS Sierra de Altomira con aguas NO APTAS por contaminantes microbiológicos o excepcionadas por presencia de bacterias coliformes

1. INTRODUCCIÓN Y OBJETIVOS

En julio de 2012 se suscribió un Convenio Específico de Colaboración entre el Instituto Geológico y Minero de España (IGME) y la Comunidad de Usuarios del Acuífero 19 "Sierra de Altomira", con el fin de que este Organismo aportara apoyo técnico en materia de infraestructura hidrogeológica y aguas subterráneas a la Comunidad de Usuarios estableciendo un intercambio de información entre ambas entidades.

El presente informe tiene como objetivo establecer una valoración de las características químicas y la calidad de las aguas subterráneas de la Masa de Agua Subterránea (MASb) Sierra de Altomira (041.001). Se pretende, con el estudio zonal de las muestras y por acuíferos, establecer áreas de características similares, definir relaciones entre las aguas subterráneas y sus acuíferos y, a partir de los análisis de las aguas de abastecimiento, definir la calidad de las mismas según los criterios de potabilidad fijados por la Reglamentación Técnica Sanitaria para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero).

Para ello se ha recopilado un importante volumen de documentación. La Comunidad de Usuarios ha solicitado a los ayuntamientos de la zona las analíticas de las aguas de abastecimiento, mientras que técnicos del Instituto Geológico y Minero de España han realizado dos campañas de muestreo, en febrero y octubre del año 2014, en varios de los sondeos de observación de la red establecida dentro de la MASb.

La documentación recopilada ha sido revisada cuidadosamente. Las muestras obtenidas de la red de observación se han asignado a uno o varios acuíferos (niveles permeables o formaciones geológicas concretas) en función de las características de la captación (localización, profundidad de la obra, profundidad del nivel piezométrico, características hidroquímicas de las aguas, etc).

Por su parte, los análisis correspondientes a las aguas de abastecimiento son muestras tomadas en la red de distribución (aguas de grifo), que no pueden asignarse, en general, a una captación concreta y/o que pueden ser el resultado de la mezcla de aguas de varias procedencias. Es este caso se ha realizado un estudio de la calidad de las aguas de abastecimiento de toda la MASb asociando los resultados al contexto geográfico municipal más que a un determinado acuífero o formación geológica.

2. ÁMBITO ADMINISTRATIVO

El ámbito territorial y administrativo de la actual MASb 041.001 Sierra de Altomira ha ido variando a lo largo del tiempo. En 1979 el Instituto Tecnológico y Geominero de España (ITGE, 1979; ITGE, 1981) estableció el Sistema Acuífero (S.A.) nº19 - Sierra de Altomira. Posteriormente, el Reglamento de la Administración Pública del Agua y de la Planificación Hidrológica (Real Decreto 927/88 de 29 de julio, BOE de 31-8-1988) definió la Unidad Hidrogeológica (U.H.) 04.01 Sierra de Altomira. (MOPU-IGME, 1988).

Finalmente, con la entrada en vigor de la Directiva Marco del Agua (2000/60/CE), y su transposición a la legislación española, se establece una nueva metodología con el objeto de lograr la protección de las aguas en los estados miembros de la Unión Europea y se incorpora una nueva figura de gestión hidrológica, la conocida como Masa de Agua Subterránea (MASb).

Así, el RD 354/2013, de 17 de mayo, por el que se aprueba el Plan Hidrológico de la parte española de la Demarcación Hidrográfica del Guadiana, define, junto con el resto de masas, la MASb Sierra de Altomira como unidad de gestión hidrológica. Definida esta masa, la Junta de Gobierno de la Confederación Hidrográfica del Guadiana, en su reunión de fecha 16 de diciembre de 2014, inicia el procedimiento para declararla en riesgo de no alcanzar el buen estado (cuantitativo y/o cualitativo) que la Directiva Marco del Agua (2000/60/CE) estipula.

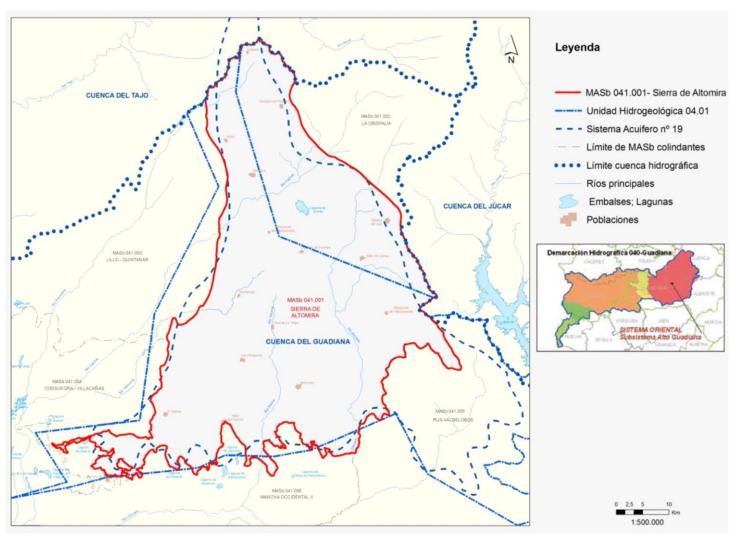


Figura 1. Límites de las divisiones hidrológicas históricas de la actual Masa de Agua Subterránea Sierra de Altomira (041.001)

3. ENCUADRE FÍSICO-CLIMÁTICO DEL ÁREA DE ESTUDIO

La MASb Sierra de Altomira se sitúa en la cuenca alta del río Guadiana. (figura 1).

Presenta una superficie total de 2.575 km², mayoritariamente dentro de la provincia de Cuenca (90%), si bien también incluye parte de las de Toledo (7%) y Ciudad Real (3%).

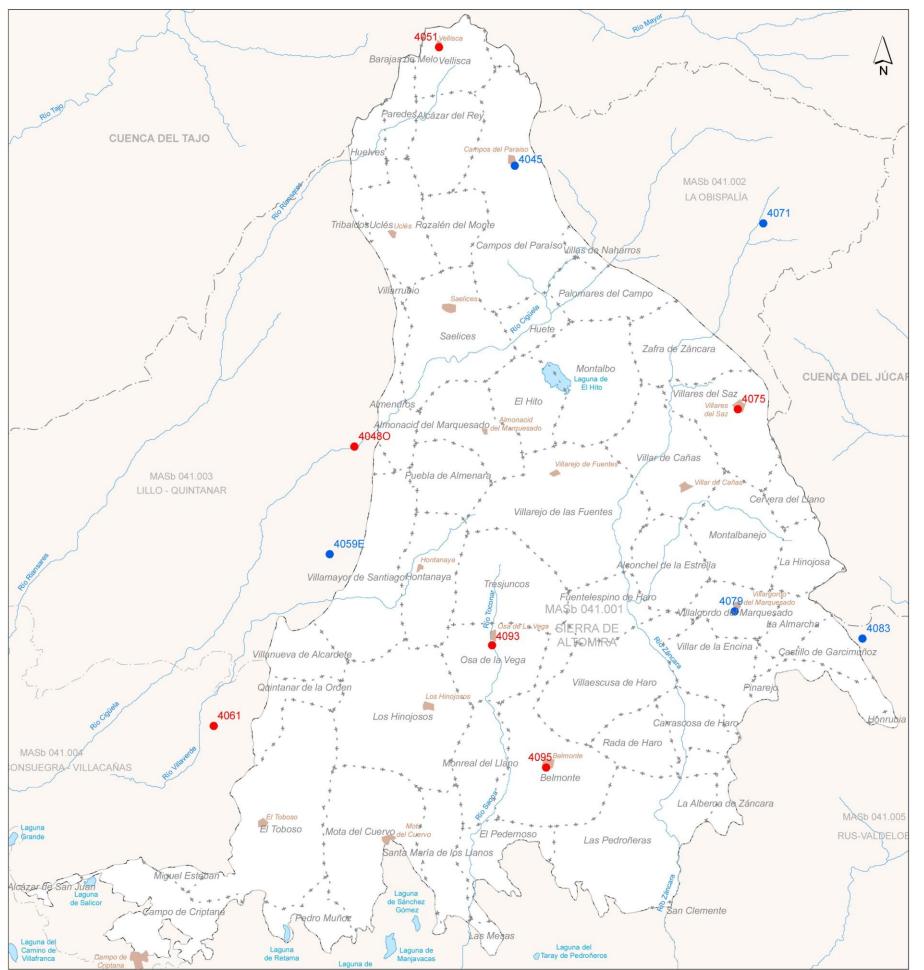
La altimetría varía desde los 656 m s.n.m. en el río Tajo, aguas abajo del puente de hierro del Salto de Bolarque, y los 1.127 m s.n.m. de la Sierra de Degollados.

Los principales cursos fluviales son el Riansares, el Gigüela y el Záncara.

Dentro de la MASb se incluyen, total o parcialmente, 62 términos municipales que suman una población de 126.727 habitantes (INE, 2007).

La principal actividad socioeconómica es la agricultura de secano, con un porcentaje de ocupación total en la MASb de 60,72 % del territorio (proyecto CORINE - Coordination of Information on the Environment).

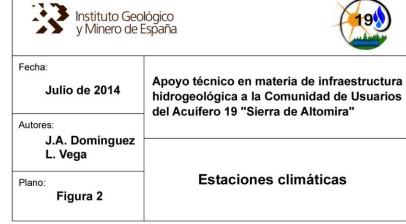
Climatológicamente, la cuenca alta del Guadiana presenta un clima de tipo mediterráneo-continental, con una estación seca bien definida y marcadas oscilaciones térmicas. El valor medio anual de precipitación es de 480,5 mm/año.


Los datos climáticos utilizados en este estudio son cedidos por la Agencia Estatal de Meteorología (AEMET) gracias al Convenio de Colaboración suscrito entre el Instituto Geológico y Minero de España (IGME) y este Organismo.

Se utilizan once estaciones meteorológicas (figura 2) cuyas características principales se muestran en la tabla 1 adjunta. Los valores obtenidos, a partir de datos mensuales, corresponden al periodo 1960 - 2013.

,	COORD. U	.T.M.(ED50)	СОТА	PRECIP	AÑO	PRECIP	AÑO	PRECIP MED.
NOMBRE ESTACIÓN	X	Y	(m s.n.m.)	MAX. (mm)	P. MAX.	MIN. (mm)	P. MIN.	ANUAL (1960-2012 en mm)
CARRASCOSA DEL CAMPO	522586	4431813	895	806,0	1976-1977	267,9	2004-2005	535,7
POZORRUBIO SANTIAGO "TORRELEN"	508441	4407089	755	619,7	1987-1988	214,3	2004-2005	423,0
VELLISCA	515904	4442248	950	1003,2	1976-1977	336,1	2004-2005	613,9
VILLAMAYOR DE SANTIAGO	506261	4397622	773	635,1	2009-2010	209,1	2004-2005	431,9
QUINTANAR DE LA ORDEN	496017	4382514	691	626,2	1974-1975	103,9	1966-1967	359,1
HUERTA DE LA OBISPALÍA	544515	4426730	910	921,6	1976-1977	265,0	1980-1981	544,7
VILLARES DEL SAZ	542281	4410376	865	888,3	1968-1969	231,9	2004-2005	519,7
VILLARGORDO DEL MARQUESADO	541998	4392585	856	786,0	1968-1969	216,8	2004-2005	470,3
CASTILLO DE GARCIMUÑOZ	553283	4390188	925	813,7	1968-1969	277,4	1998-1999	509,8
OSA DE LA VEGA	520589	4389618	763	693,0	1968-1969	173,4	2004-2005	436,1
BELMONTE	525368	4378855	750	728,0	1987-1988	185,5	2004-2005	441,6

Tabla 1. Estaciones climatológicas en el entorno del área de estudio y valores de precipitación máxima, mínima y media del periodo de registro 1960-2013.



Leyenda

nº ESTACIÓN	NOMBRE	PRECIP MAX. (mm)	AÑO P. MAX.	PRECIP MIN. (mm)	AÑO P. MIN.	PRECIP MED. ANUAL (1960-2012 en mm)
4045	CARRASCOSA DEL CAMPO	806,0	1976-1977	267,9	2004-2005	535,7
40480	POZORRUBIO SANTIAGO "TORRELEN"	619,7	1987-1988	214,3	2004-2005	423,0
4051	VELLISCA	1003,2	1976-1977	336,1	2004-2005	613,9
4059E	VILLAMAYOR DE SANTIAGO	635,1	2009-2010	209,1	2004-2005	431,9
4061	QUINTANAR DE LA ORDEN	626,2	1974-1975	103,9	1966-1967	359,1
4071	HUERTA DE LA OBISPALÍA	921,6	1976-1977	265,0	1980-1981	544,7
4075	VILLARES DEL SAZ	888,3	1968-1969	231,9	2004-2005	519,7
4079	VILLARGORDO DEL MARQUESADO	786,0	1968-1969	216,8	2004-2005	470,3
4083	CASTILLO DE GARCIMUÑOZ	813,7	1968-1969	277,4	1998-1999	509,8
4093	OSA DE LA VEGA	693,0	1968-1969	173,4	2004-2005	436,1
4095	BELMONTE	728,0	1987-1988	185,5	2004-2005	441,6

4. ENCUADRE HIDROGEOLÓGICO DEL ÁREA DE ESTUDIO

En líneas generales, la serie estratigráfica de la MASb Sierra de Altomira está formada, de base a techo, por una serie de calizas y dolomía jurásico-cretácicas que se apoyan sobre una base impermeable compuesta por las arcillas, margas y yesos triásicos. Este primer paquete permeable puede alcanzar una potencia de hasta 1.100 m en el sector oriental de la cuenca.

Sobre estos niveles carbonatados se sitúa una serie margo-yesífera que corresponde al tránsito cretácico-terciario.

Finalmente se desarrolla una sucesión de depósitos de origen continental (detríticos y evaporíticos), de edades paleógenas y miocenas, con potencias superiores a los 300 m, coronada por afloramientos dispersos de calizas de reducido espesor (ITGE, 1989) (figura 3).

La MASb 041.001 está considerada como un acuífero complejo, que actúa en régimen libre o de semiconfinamiento en profundidad, cuyo acuífero principal está constituido por los materiales jurásicos (ITGE, 1989).

El funcionamiento hidrogeológico está condicionado en gran medida por la estructura, los niveles margosos favorecen el despegue de las distintas escamas y los cabalgamientos funcionan como impermeables de base que individualizan acuíferos. Los pliegues anticlinales y sinclinales funcionan como divisorias locales del flujo subterráneo, así como las fallas que individualizan bloques y delimitan las depresiones terciarias.

4.1. FORMACIONES ACUÍFERAS

Dentro de la MASb se distinguen, de base a techo, las siguientes formaciones acuíferas:

- Acuíferos carbonatados jurásicos. Son los que presentan la mayor superficie de afloramiento. Se inician con los materiales del Lías, compuestos por una alternancia de dolomías en la base, seguidos por calizas y dolomías y calizas a techo. Sobre los mismos encontramos las dolomías del Dogger. Todos estos materiales constituyen un acuífero único isótropo y homogéneo. El conjunto se encuentra plegado en una sucesión de sinclinales y anticlinales. Aunque se considera un único tramo permeable, a nivel local puede presentar niveles acuíferos hidráulicamente independientes.
- Acuíferos detríticos cretácicos. En la base se componen de depósitos calcomargosos y brechoides en Facies Weald a los que siguen la Formación Arenas de Utrillas. Por su permeabilidad media-baja se comportan como un nivel semipermeable constituyendo acuíferos de interés local.

- Acuíferos carbonatados cretácicos. Por su proximidad a la superficie son los niveles permeables más explotados. Están constituidos por una alternancia de dolomías, margas y calizas (Cenomaniense-Turoniense), con una potencia superior al centenar de metros que aumenta hacia el este.
- Acuífero calco-yesífero del tránsito cretácico-terciario. Por la mala calidad de sus aguas es un acuífero con escaso aprovechamiento.
- **Acuíferos terciarios.** Forman un acuífero multicapa, poco conocido pero de gran potencial, con valores de transmisividad bajos, distribuido en horizontes arenosos y conglomeráticos alternantes con arcillas, y con cambios laterales de facies hacia litologías más evaporíticas.
 - A techo de esta serie se depositan las calizas tableadas de origen lacustre del Pontiense que pueden constituir niveles locales de cierto interés y suelen formar pequeños acuíferos colgados drenados por manantiales.
- **Acuíferos cuaternarios.** Están formados por materiales detríticos de origen fluvial y aluvial. Presentan altos valores de permeabilidad. Tienen interés muy local y se circunscriben a los principales cauces fluviales de la zona.

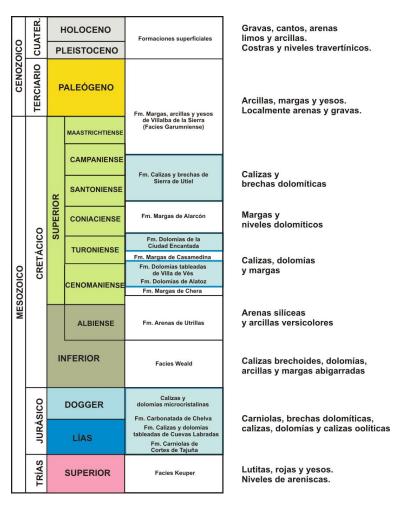
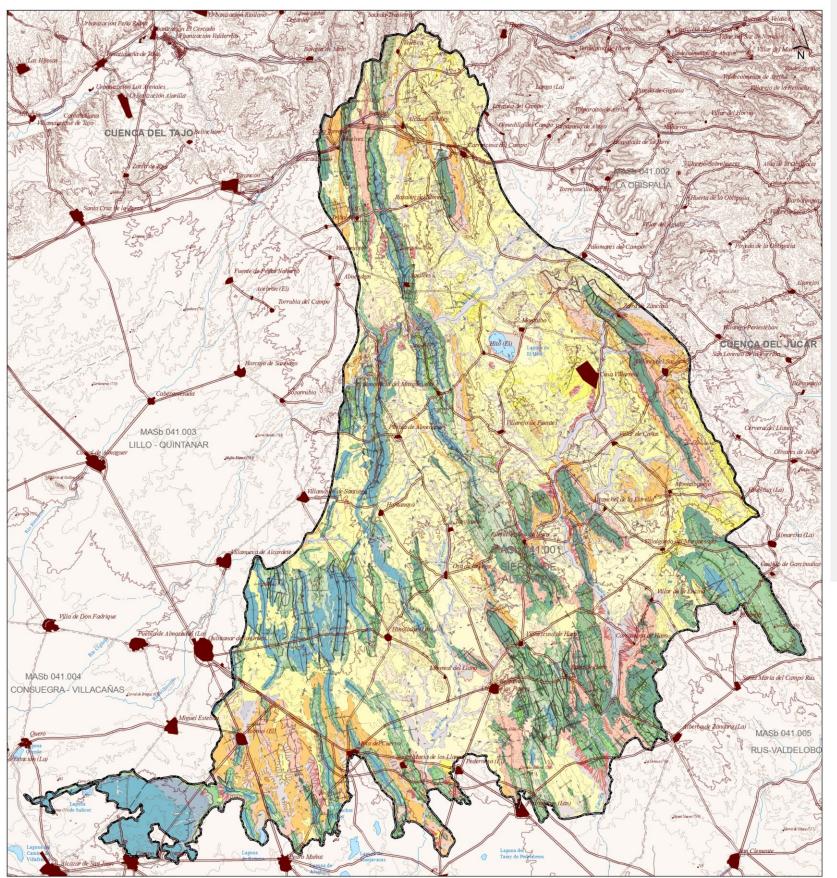
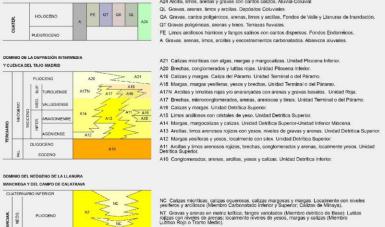




Figura 3 Formaciones acuíferas en la MASb Sierra de Altomira.

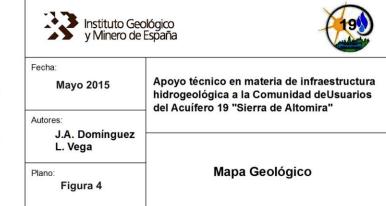
Leyenda Geológica

A9 Arcillas, margas y yesos. Localmente arenas y gravas. Fm. Villaiba de la Sierra.


A8 Calizas y brechas dolomiticas.
Fms. Calizas y Brechas de la Sierra de Utiel, Brechas Dolomiticas\de Cuenca y Calizas con "Lac

A7 Margas y niveles dolomítico Fm.: Margas de Alarcón.


A6. Calizas, dolomías y margas.
Fms.: Margas de Chera, Dolomías de Villa de Ves, Margas delCasa Medna, Dolomías de la Ciudad Encantada.


A5 Arenas silíceas y arcillas versicolores. Fm.: Arenas de Utrillas.

A4 Cailzas brechóides, dolomías, arcillas y margas abigarradas Fm.: Weald, A3 Carniolas, brechas dolomíticas, calizas, dolomías y calizas obliticas, Fms.:Camiolas de Cortes de Tajuña, Cuevas Labradas y C. de Chelva.

L1C Calizas grises con crinoides. L1 Dolomias masivas camiolares y brechóides, Calizas dolomiticas. T3 Lutitas rojas y yesos de colores abigarrados.

5. METODOLOGÍA DE MUESTREO

Como se ha indicado en el apartado 1, se han realizado dos campañas de toma de muestras de agua en varios de los puntos de la red de observación que el IGME ha establecido dentro de la MASb Sierra de Altomira. Estas campañas se llevaron a cabo en febrero y octubre del año 2014.

En función de los parámetros a analizar se requiere un volumen de muestra u otro. En el caso que nos ocupa, se precisa la toma de 500 ml de agua, para lo cual se usan unos recipientes (botellas especiales) de esta capacidad.

La metodología de muestreo consiste en el llenado de la muestra de agua bien directamente desde el manantial, en caso de que se trate de una surgencia natural o mediante la utilización de un tubo "tomamuestras" que es introducido desde la superficie en la captación y que permite extraer el volumen de agua necesario para, ya en superficie, llenar la botella de muestra.

Cada botella está convenientemente identificada con la fecha y el nombre del punto de muestreo y es trasladada en neveras, en un corto periodo de tiempo, hasta el laboratorio donde se realiza el análisis.

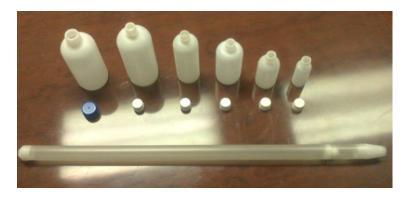


Figura 5 Material empleado en la toma de muestras de agua.

6. RED DE PUNTOS DE MUESTREO DE CALIDAD EN LA MASB SIERRA DE ALTOMIRA

La red de muestreo analítico establecida por el IGME en la MASb Sierra de Altomira consta de un total de 14 puntos. Las dificultades en la obtención de muestras impide que dicha red sea mayor.

Se han obtenido muestras de 9 puntos en las dos campañas de muestreo realizadas, mientras que en los otros cinco puntos sólo se pudo tomar muestra en una de las dos campañas.

Se realiza primero un estudio conjunto de las muestras obtenidas con objeto de establecer posibles familias de aguas. Posteriormente, el análisis de las muestras se realiza por acuíferos, con objeto de caracterizar las aguas de los mismos. En esta segunda fase hay que tener en cuenta que tanto los materiales del Cretácico como los terciarios están constituidos por varios niveles permeables independientes o acuíferos desconectados, que pueden contener aguas de características químicas muy distintas. Existen además dos muestras (212820001 y 222830001) que se considera que son aguas de mezcla de los acuíferos Terciario y Cretácico y Cretácico y Jurásico respectivamente, y cuyos resultados se estudiarán inicialmente por separado sin englobarlas en ningún grupo de aguas concreto.

Así, se ha realizado la siguiente agrupación del total de muestras obtenidas, 5 se considera pertenecientes a aguas de los niveles permeables terciarios, 6 a acuíferos del Cretácico y sólo una al acuífero Jurásico.

En la tabla siguiente se especifican los puntos de muestreo, sus coordenadas, las campañas de muestreo y el acuífero al que corresponden sus aguas.

Nº IGME / NOMBRE	COORD X (ED 50)	COORD Y (ED 50)	ACUÍFERO	CAMPAÑAS
212640004	510882	4408477	TERCIARIO	24/02/2014
212040004	310002	4400477	TERCIANIO	22/10/2014
212770001	501630	4378056	MIOCENO	27/02/2014
212820001	498113	4370956	TERC+CRET	27/02/2014
212820001	490113	4370930	TENCTORET	23/10/2014
212830006	502354	4368084	CRETÁCICO	27/02/2014
212830000	302334	4306064	CRETACICO	23/10/2014
222580011	538366	4416690	Q+TERCIARIO	28/02/2014
222380011	338300	4410090	Q+TENCIANIO	22/10/2014
222580012	537348	4416181	CRETACICO	28/02/2014
222360012	337346	4410161	CRETACICO	22/10/2014
222620003	525787	4402385	MIOCENO	26/02/2014
222640010	539126	4400775	MIOCENO	24/02/2014
222040010	339120	4400773	MIOCLINO	22/10/2014
222770003	528341	4380544	CRETÁCICO	28/02/2014
222770003	J20J41	4380344	CRETACICO	22/10/2014
222810007	517321	4372007	JURÁSICO	27/02/2014
222810007	31/321	4372007	JUNASICO	23/10/2014
222830001	531713	4366943	CRET+JURA	28/02/2014
232720019	552053	4390077	CRETÁCICO	22/10/2014
Pozo del Marqués	517558	4373449	CRETÁCICO	15/10/2014
Nacimiento Saona	517391	4374080	CRETÁCICO	05/03/2014
ivaciiiieillo Saoila	31/331	4374000	CILIACICO	15/10/2014

Tabla 2. Puntos de muestreo de calidad de las aguas subterráneas en la MASb Sierra de Altomira.

6.1. DATOS ANALIZADOS

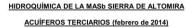
En la campaña de febrero 2014 se realizó un análisis de elementos mayoritarios o análisis mínimo y se complementó dicho análisis con la estimación de los contenidos elementales de los principales metales.

En la campaña de octubre de 2014 únicamente se analizaron los elementos mayoritarios.

ELEMENTOS	MUESTREOS				
ANALIZADOS	24/02/2014	22/10/2014			
	Na (mg/L)				
	K (mg/L)				
	Ca (n	ng/L)			
	Mg (r	mg/L)			
	CI (m	ng/L)			
	SO4 (mg/L)			
	HCO3	(mg/L)			
MAYORITARIOS	CO3 (mg/L)			
(análisis mínimo)	NO3 (mg/L)			
	NO2 (mg/L)			
	NH4 (mg/L)				
	PO4 (mg/L)				
	SiO2 (mg/L)				
	Oxidabilidad al MnO4K (mg/L)				
	Conductivida				
	р	Н			
	Rs 180 (mg/L)				
	As (μg/l)				
	Cd (µg/l)				
	Cr (µg/l)				
	Cu (µg/l)				
	Fe (μg/l)				
METALES	Hg (µg/l)				
	Mn (μg/l)				
	Pb (μg/l)				
	Se (μg/l)				
	Zn (μg/l)				
	Fluoruro (mg/L)				
	CN (mg/L)				

Tabla 3. Medidas de caudal en la red foronómica de la MASb Sierra de Altomira. Años 2009 y 2012

6.2. REPRESENTACIÓN DE LOS RESULTADOS


En el presente estudio se han empleado los diagramas de Schoeller-Berkaloff y de Piper para la representación de los contenidos elementales de las muestras analizadas.

• Diagrama de Schoeller-Berkaloff

Se trata de un diagrama de columnas o ejes logarítmicos, separados unos de otros por igual distancia, en el que se representan, cada uno en un eje, las concentraciones en meq/L de los siguientes iones: Ca²⁺, Mg²⁺, Na⁺, Cl⁻, SO₄²⁻ y HCO₃⁻. En ordenadas se indica la escala en meq/L. Los diferentes valores elementales de una muestra, fijados en los distintos ejes, quedan unidos por líneas rectas de tal forma que cada muestra queda definida por un perfil.

Este tipo de diagrama permite ver con facilidad mezclas de aguas, si se cuenta con la composición de aguas origen. Con muestras de diferente fecha pueden mostrar evoluciones (aumento o disminución) en la concentración de determinado compuesto y los cambios de pendiente de los segmentos indican cambios en algunas relaciones iónicas. Si se compara la forma en que queda representada cada muestra de agua es posible establecer las reacciones sufridas o grupos de aguas de similares características.

DIAGRAMA DE SCHOELLER-BERKALOFF

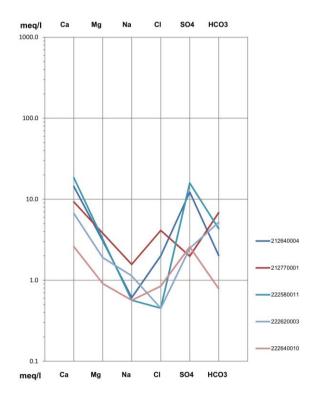


Figura 6. Ejemplo de diagrama de Schoeller-Berkaloff

• Diagrama de Piper

Se trata de un diagrama compuesto a su vez por dos diagramas triangulares laterales y uno romboidal central.

DIAGRAMA DE PIPER

HIDROQUÍMICA DE LA MASS SIERRA DE ALTOMIRA ACUÍFEROS CRETÁCICOS (febrero de 2014)

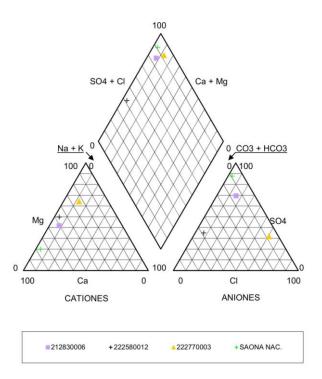


Figura 7. Ejemplo de diagrama de Piper

En uno de los triángulos equiláteros se representan las concentraciones de los cationes Ca^{2^+} , Mg^{2^+} y Na^+ (o la suma de Na^+ y K^+) y en el otro las de los aniones $SO_4^{2^-}$, Cl^- y HCO_3^- , (o la suma de HCO_3^- y $CO_3^{2^-}$).

Cada lado de los triángulos constituye una escala que va de 0 a 100 % en meq/L de concentración de un ión, de tal forma que cada vértice fija el 100 % de la concentración de un ión y al mismo tiempo el 0 % de la de otro. En el triángulo en el que se representan los cationes las escalas que constituyen los lados del mismo crecen en sentido horario, mientras que en el triángulo de los aniones lo hacen en sentido antihorario.

Cualquier punto del interior de los triángulos indica el % presente de cada uno de los tres iones representados en sus vértices. Para representar la concentración elemental de cada ión se debe marcar el % de su concentración sobre el correspondiente lado del triángulo que marca su escala y desde este punto se traza una línea paralela al lado del triángulo que contiene el vértice en el que se fija la concentración del 0 % de ese ión. Al realizar la misma operación con cada

elemento, las tres líneas trazadas se cortan en un punto interior del triángulo que es el que fija la concentración de los tres iones.

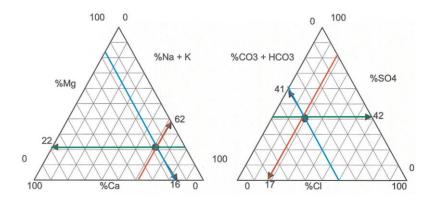


Figura 8. Triángulos en los que se representa la concentración en meq/L de cationes (triángulo izquierdo) y aniones (triángulo derecho) en un diagrama de Piper. En la figura se representa la siguiente concentración iónica: 62% rNa+rK, 22% rMg, 16% rCa (aniones) y 17% rCl, 41% rCO₃+rHCO₃ y 42% rSO₄.

En el campo romboidal central se representa la suma de los cationes $(Ca^{2+} + Mg^{2+})$ y $(Na^+ + K^+)$ en un par de lados paralelos y complementarios, mientras en el otro par de lados se presenta la suma de aniones $(CO_3^{2-} + HCO_3^-)$ y su complementario $(SO_4^{2-} + Cl^-)$.

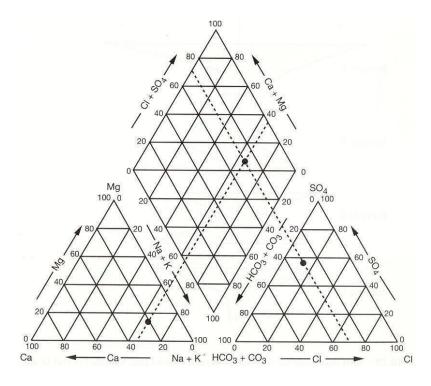


Figura 9. Re presentación de la muestra en el romboedro central

Un diagrama de Piper puede subdividirse en una serie de campos que representan aguas con características químicas similares, de forma que cada muestra quedará en un sector determinado definiendo así su **facies** característica, tal como se muestra en la figura adjunta.

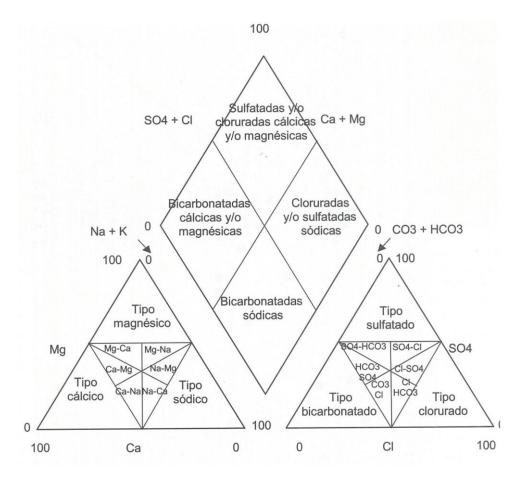


Figura 10. Clasificación mediante el diagrama de Piper de los distintos tipos de aguas

Este tipo de gráficos permite la representación de multitud de muestras que pueden ser comparadas y clasificadas, agrupando las mismas por familias hidroquímicas o determinando posibles mezclas entre ellas.

7. ANÁLISIS HIDROQUÍMICO

En hidrogeología es fundamental conocer las características químicas de las aguas subterráneas de la zona que se pretende estudiar. La finalidad es establecer las relaciones entre la composición, distribución y circulación del agua de los acuíferos y la geología, mineralogía y sistema de flujo de estos (Vázquez-Suñé, E. 2009). El agua constituye el soporte (por disolución o suspensión) de diferentes compuestos orgánicos e inorgánicos que son los que determinan sus posibles usos y permiten además conocer su historia desde la infiltración inicial hasta su captación para el análisis. Por ello, el

análisis de una muestra de agua subterránea permite tener una idea de las principales reacciones y procesos modificadores que la han afectado desde su infiltración.

En líneas generales, las aguas subterráneas presentan una serie de elementos mayoritarios o fundamentales que se enumeran a continuación:

- Aniones: Cl⁻, HCO₃⁻, SO₄²⁻, NO₃⁻
- Cationes: Na⁺, K⁺, Ca²⁺, Mg²⁺
- Los iones NO₃⁻, CO₃²-, K⁺, se consideran del grupo de los elementos mayoritarios o fundamentales, aunque se presentan en proporciones muy inferiores.

Otros componentes habituales son:

- Coloides, como el SiO₂, que puede aparecer disuelto en forma de H₂SiO₄. Son partículas o agrupaciones de partículas de tamaño superior a una molécula pero no visibles a simple vista.
- Componentes minoritarios: aparecen en concentraciones entre 0,01 y 10 mg/L y representan menos del 1% de las sustancias disueltas. Entre ellos destacan el Fe²⁺, NO²⁻, F⁻, NH₄⁺ o el Sr²⁺.
- Otros elementos habituales pero presentes en concentraciones comprendidas entre 0,0001 y 0,1 mg/L son el Br⁻, HS⁻, H₂PO₃⁻, BO₃H²⁻, Γ, Fe³⁺, Mn²⁺, H⁺ o el Al³⁺.
- Componentes traza. Son aquellos cuya concentración es inferior a 0,0001 mg/L. Cuando superan esta pueden ocasionar problemas de potabilidad. Los más frecuentes son el As, Sb, Cr, Pb, Cu, Zn, Ba, V, Hg y U.
- Gases disueltos: CO₂, O₂, N₂ y CH₄.

Dicho lo anterior, es evidente que la existencia de diferentes tipos de aguas es consecuencia de diferentes composiciones químicas y estas a su vez son función de la historia evolutiva del agua dentro del ciclo hidrológico, desde su precipitación, infiltración, trayecto subterráneo hasta su nueva emersión a la superficie. Es decir, de cómo el agua adquiere los solutos a medida que interacciona con el medio.

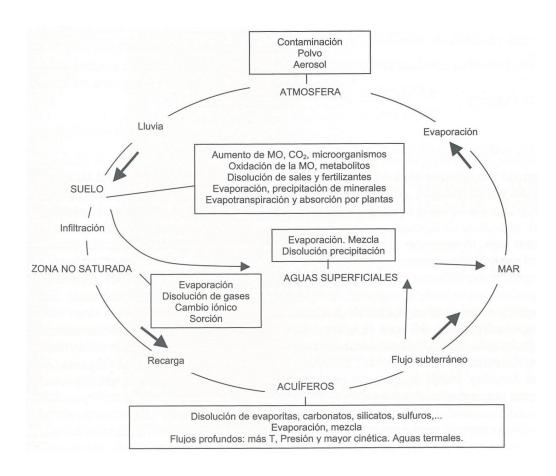


Figura 11. Esquema de los principales procesos modificadores de la composición de las aguas dentro del ciclo hidrológico. MO: materia orgánica. (Extraído de Hidrogeología. Conceptos básicos de hidrogeología subterránea. 2009)

En el presente estudio la concentración de los diferentes elementos se expresa en peso, en mg/L o μg/L, es decir, en miligramos por litro de disolución o microgramos por litro de disolución, dependiendo de si se trata de elementos mayoritarios o minoritarios. Para tener una referencia se indica que las aguas subterráneas dulces tienen un contenido en sales disueltas del orden de 0,2 g/L, si bien, son habituales valores de hasta 1 o 1,5 g/L, mientras que el agua del mar presenta una concentración aproximada de 35 g/L.

ELEMENTO	SÍMBOLO	CONCENTRACIÓN (mg/L)			
		AGUA DE LLUVIA	AGUA DE MAR	AGUA SUBTERÁNEA	ORIGEN
Sodio	Na⁺		10000	5-150	Feldespato, sal gema. Zeolita, polvo atmosférico, agua de mar y aerosol marino
Potasio	K ⁺		400	1-10	Feldespato, mica y agua de mar
Magnesio	Mg ⁺²		1.200	1-75	Dolomita, serpentina, piroxeno, anfíbol olivino, mica y agua de mar
Calcio	Ca ⁺²		400	10-250	Carbonatos, yeso, feldespato, piroxeno, anfíbol
Cloruro	Cl	0-20	2.000	10-250	Sal gema, polvo atmosférico, agua de mar y aerosol marino
Bicarbonato	HCO ₃	0-20	120	50-350	Carbonatos, materia orgánica, CO ₂ suelos
Sulfato	SO ₄ ⁻²	0-10	3.000	10-300	Atmósfera, yeso, sulfuros, fertilizantes
Nitrato	NO ₃	0-5	1	0-300	Atmósfera, materia orgánica, fertilizantes
Silice	SiO ₂			1-60	Silicatos
Hierro	Fe ⁺²			0,01-10	Silicatos, siderita, hidróxidos, sulfuros
Fósforo total	PO₄ total			0,001-1	Materia orgánica, fosfatos, aguas residuales y urbanas
Bromuro	Br ⁻	0	65	0-2	Agua de mar
Estroncio	Sr ⁺²		13	0-1	Sales de estroncio asociadas a rocas carbonatadas y agua de mar
Conductividad			45.000 μS/cm	100-200 μS/cm	Indicador del contenido en sales

Tabla 4. Concentraciones típicas del agua de lluvia, dulce y del mar y posibles orígenes de su contenido elemental.

8. FACIES HIDROQUÍMICAS

El concepto de facies hidroquímica se basa en la hipótesis de que la composición química del agua subterránea en cualquier punto refleja una tendencia hacia el equilibrio químico con la roca que la contiene y que sigue la conocida como secuencia de Chebotarev (1955), de tal forma que toda agua subterránea tiene unas características químicas particulares dependiendo de la roca encajante y del tiempo de permanencia en el acuífero (Diccionarios Oxford-Complutense. Ciencias de la Tierra - 2000).

Dicha secuencia de Chebotarev no es más que una secuencia ideal que refleja los cambios químicos en el agua subterránea producidos por el paso de esta a través de la roca desde las zonas de infiltración hasta las de descarga. En general, cuanto mayor es el tiempo de contacto del agua con las rocas del acuífero mayor es su contenido iónico. La profundidad de circulación de las aguas también es un factor importante.

Las aguas sufrirían así un progresivo cambio en su composición tal como el que se refleja a continuación:

Aguas bicarbonatadas \rightarrow aguas bicarbonatadas-cloruradas \rightarrow aguas clorurado-bicarbonatadas \rightarrow aguas clorurado sulfatadas o sulfatado-cloruradas \rightarrow aguas sulfatadas \rightarrow y aguas cloruradas

En este apartado se determina la facies hidroquímica de todas las muestras analizadas y se realiza un estudio comparado del conjunto de las mismas por campañas, de forma individualizada, por acuíferos y zonalmente.

8.1. ESTUDIO CONJUNTO DE LAS MUESTRAS POR CAMPAÑAS

En este primer apartado se realiza una comparación conjunta de todas las muestras de agua analizadas con el fin de comprobar si existen diferencias destacadas o si se pueden agrupar de forma sencilla en distintas familias de aguas.

Para la representación de los resultados se ha utilizado el programa EASY-QUIM.4, desarrollado por D. Enric Vàzquez Suñé en 2002.

• CAMPAÑA DE FEBRERO DE 2014

DIAGRAMA DE PIPER

HIDROQUÍMICA DE LA MASS SIERRA DE ALTOMIRA (febrero de 2014)

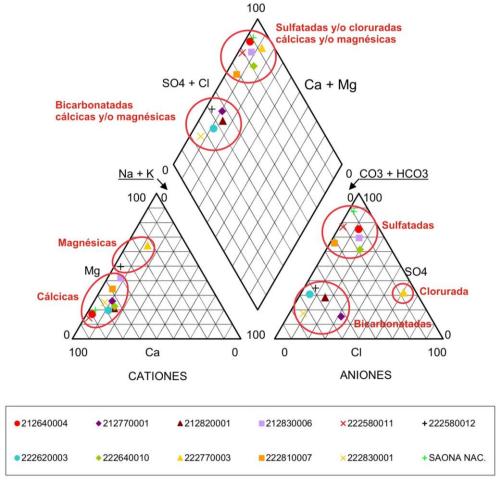


Figura 12. Representación de las muestras de aguas tomadas en febrero de 2014 mediante diagrama de Piper.

Observando el gráfico adjunto se pueden agrupar las aguas analizadas en dos familias principales, aguas sulfatadas y aguas bicarbonatadas. Existe una muestra que es claramente clorurada. Dentro de estos dos grupos de aguas predominan las cálcicas sobre las magnésicas de tal forma que únicamente dos muestras se pueden considerar magnésicas, la 222770003 que sería un agua de facies clorurado magnésica y la 2225810012 que se clasificaría como bicarbonatada magnésica. El resto de muestras serían sulfatadas o bicarbonatadas pero en todos los casos cálcicas.

DIAGRAMA DE SCHOELLER-BERKALOFF

HIDROQUÍMICA DE LA MASb SIERRA DE ALTOMIRA (febrero de 2014)

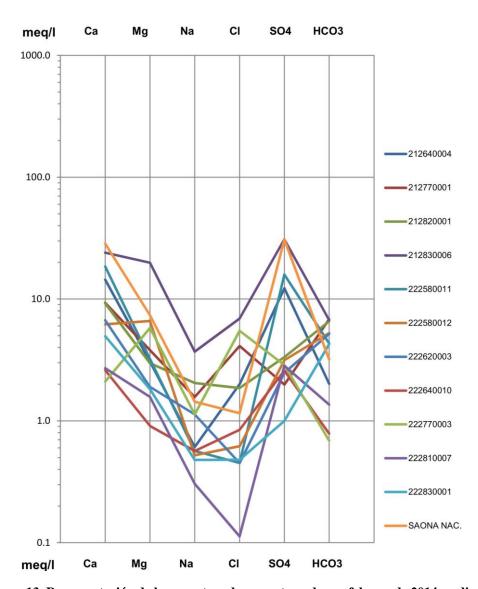


Figura 13. Representación de las muestras de aguas tomadas en febrero de 2014 mediante diagrama de Schoeller-Berkaloff

En el diagrama de Schoeller-Berkaloff se observa básicamente que existe una muestra menos mineralizada que el resto, la correspondiente al punto 222810007 y otra cuyo contenido elemental es mayor, la 212830006.

• CAMPAÑA DE OCTUBRE DE 2014

DIAGRAMA DE PIPER

HIDROQUÍMICA DE LA MASb SIERRA DE ALTOMIRA (octubreo de 2014)

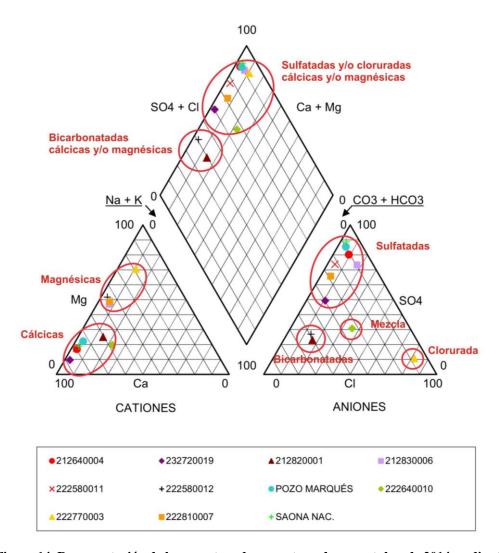


Figura 14. Representación de las muestras de aguas tomadas en octubre de 2014 mediante diagrama de Piper.

Las aguas de octubre de 2014 se pueden agrupar igualmente en aguas sulfatadas y aguas bicarbonatadas, con dos muestras individualizadas, una que marca una facies claramente clorurada (222770003) y otra con una facies "intermedia" sulfatada clorurada cálcicomagnésica (222640010). Las aguas cálcicas siguen predominando, sin embargo, aparecen más muestras magnésicas, las dos ya así clasificadas en febrero (222770003 y 222580012) y dos muestras cuya composición varía hacia este tipo de facies pasando de cálcicas a magnésicas (222810007 y 212830006).

DIAGRAMA DE SCHOELLER-BERKALOFF

HIDROQUÍMICA DE LA MASb SIERRA DE ALTOMIRA (octubre de 2014)

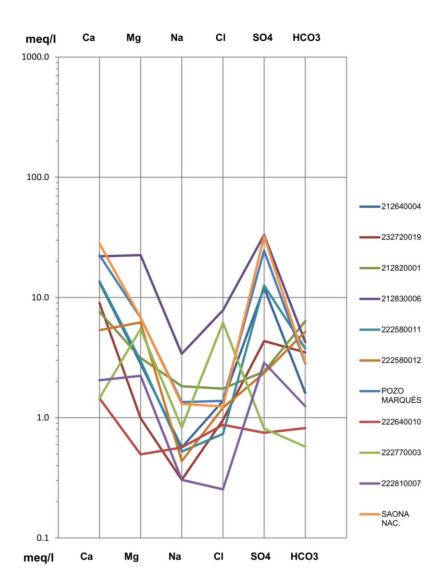


Figura 15. Representación de las muestras de aguas tomadas en octubre de 2014 mediante diagrama de Schoeller-Berkaloff

En la representación composicional mediante el diagrama de Schoeller-Berkaloff de las muestras de octubre se observa cómo se mantienen las dos mismas muestras que en febrero con un bajo y alto contenido en sales (222810007 y 212830006).

8.2. ESTUDIO INDIVIDUALIZADO DE LAS MUESTRAS

A continuación se analizan de forma individualizada todas las muestras recogidas. En un mismo diagrama se muestran los resultados obtenidos de cada muestra en las dos campañas realizadas (febrero y octubre de 2014).

• PUNTO 212640004

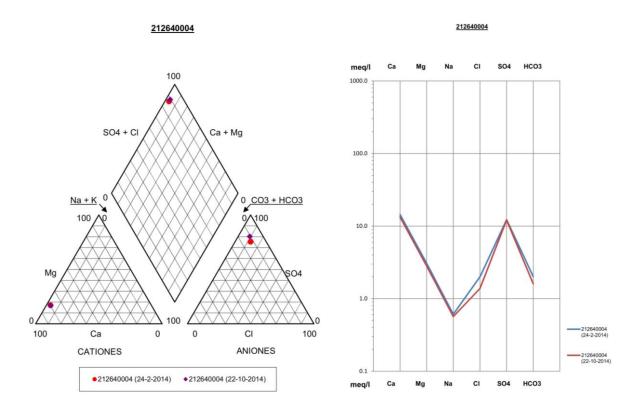


Figura 16. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 212640004

De estos gráficos se deduce que la facies hidroquímica de esta agua es **sulfatada cálcica** y que no ha sufrido variaciones estacionales.

PUNTO 212770001

FACIES HIDROQUÍMICA DEL PUNTO 212770001 (febrero de 2014) FACIES HIDROQUÍMICA DEL PUNTO 212770001 (febrero de 2014) SO4 нсо3 1000.0 SO4 + CI Ca + Mg 100.0 CO3 + HCO3 100 10.0 1.0 100 ANIONES CATIONES -212770001 212770001 Ca SO4

Figura 17. Gráficos de Piper y Schoeller-Berkaloff de la muestras de febrero de 2014 del punto 212770001

meg/l

En este punto solo se ha tomado una muestra en el mes de febrero de 2014.

La facies hidroquímica de esta agua es bicarbonatada cálcica.

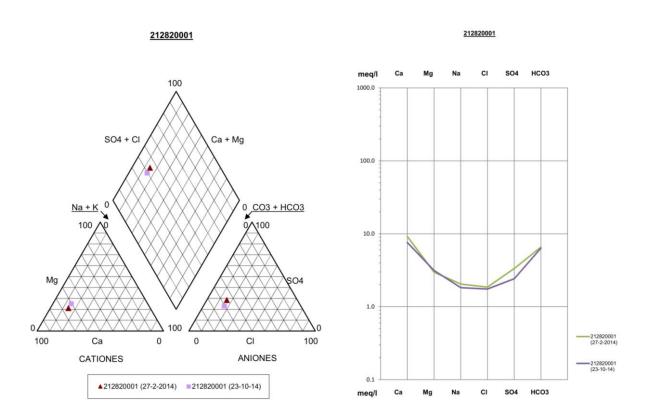


Figura 18. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 212820001

La facies hidroquímica de esta agua es **bicarbonatada cálcica** y no ha modificado su composición a lo largo del periodo de muestreo.

PUNTO 212830006

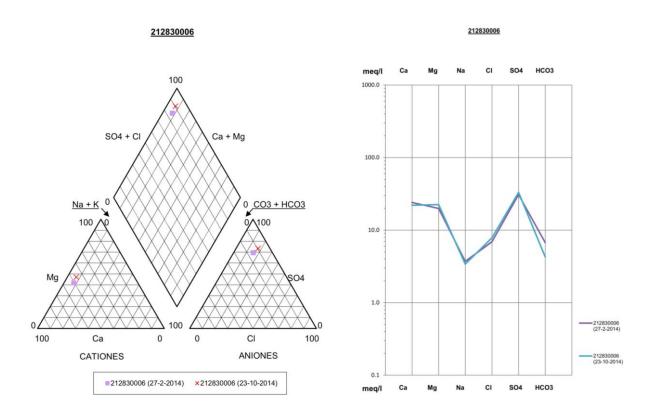


Figura 19. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 212830006

El agua de esta muestra se clasifica como de facies **sulfatada cálcico-magnésica**. No se aprecia apenas variación en la composición entre ambas muestras.



Figura 20. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222580011

La facies hidroquímica de estas muestras es claramente **sulfatada cálcica** y, como en las anteriores, entre ambos muestreos no se produce un cambio significativos en la composición elemental del agua muestreada.

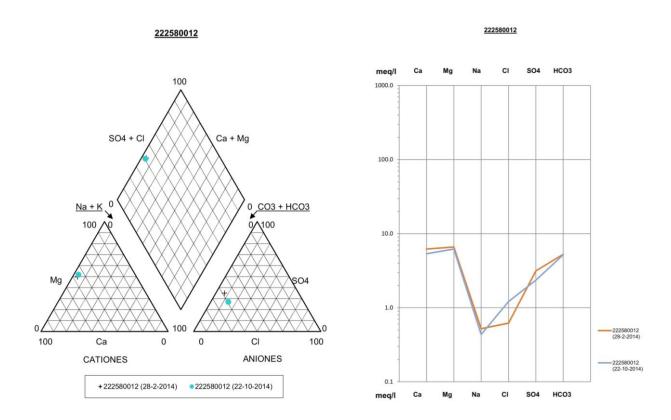


Figura 21. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222580012

El agua de este punto de muestreo no ha variado su facies **bicarbonatada magnésica** entre los periodos de toma de muestras.

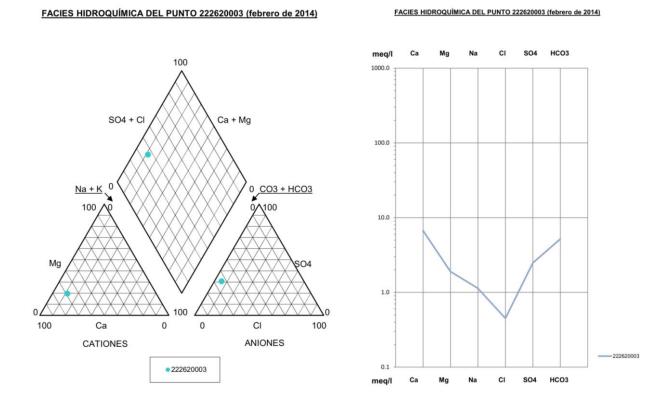


Figura 22. Gráficos de Piper y Schoeller-Berkaloff de la muestra de febrero de 2014 del punto 222620003

Este punto presenta aguas **bicarbonatadas cálcicas** y solo se tomó muestra del mismo en febrero de 2014.

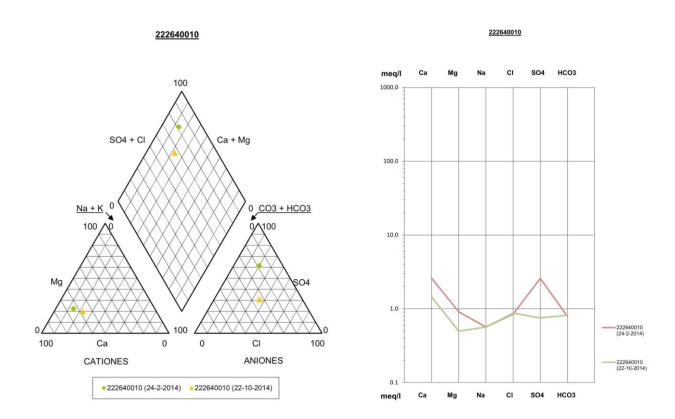


Figura 23. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222640010

Esta muestra presenta en febrero de 2014 una facies hidroquímica **sulfatada cálcica** que en octubre se torna **clorurada bicarbonatada cálcico-sódica**. Esta variación también se observa en el diagrama de Schoeller-Berkaloff en el que se aprecia de febrero a octubre una disminución en la concentración de algunos elementos mayoritarios como son el calcio, el magnesio y el sulfato.

PUNTO 222770003

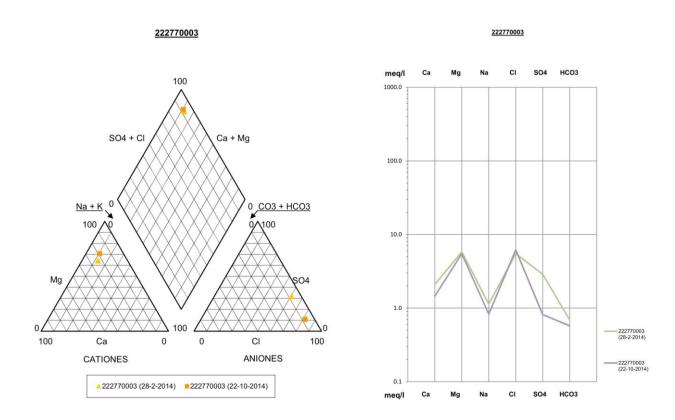


Figura 24. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222770003

Esta muestra presenta tanto en febrero de 2014 como en octubre del mismo año una facies hidroquímica **clorurado magnésica**, si bien en febrero esta facies es algo más sulfatada, tal como se puede comprobar en el diagrama de Schoeller-Berkaloss en el que se ve como en ambos muestreos los contenidos elementales son casi idénticos entre un registro y otro, sin embargo, la concentración en sulfatos es sensiblemente menor en octubre.

PUNTO 222810007

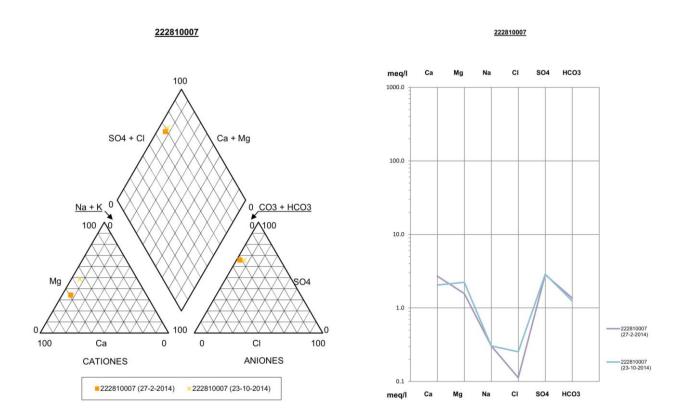
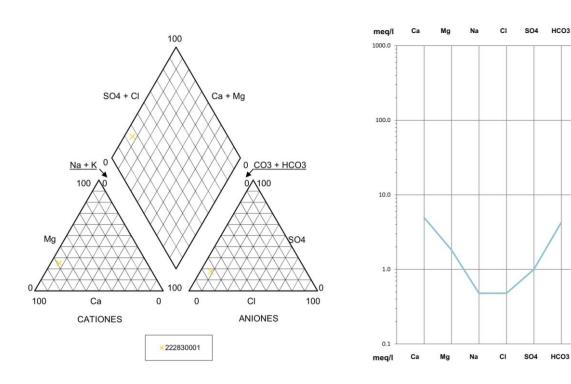


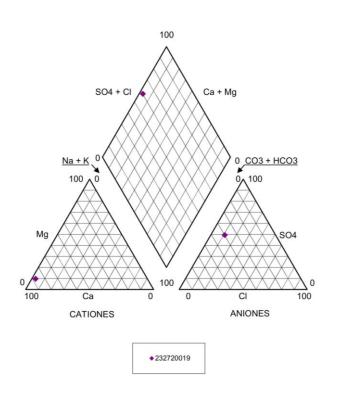
Figura 25. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto 222810007

Esta muestra sufre un ligero cambio en su composición entre las analíticas de febrero y octubre de 2014, lo que se refleja en que su facies hidroquímica pasa de **sulfatada cálcica** en febrero a **sulfatada magnésico-cálcica** en octubre. Esta ligera variación es visible también en el diagrama de Schoeller-Berkaloff, en el que las dos rectas son muy similares, pero presentan algunos picos discordantes, así, el ión calcio es más abundante en febrero que en octubre, el ión magnesio se comporta al revés y el ión cloro aumenta claramente de febrero a octubre.

FACIES HIDROQUÍMICA DEL PUNTO 222830001 (febrero de 2014)

FACIES HIDROQUÍMICA DEL PUNTO 222830001 (febrero de 2014)




Figura 26. Gráficos de Piper y Schoeller-Berkaloff de la muestra de febrero de 2014 del punto 222830001

En este punto solo se tomó muestra en febrero de 2014. La facies hidroquímica de estas aguas es **bicarbonatada cálcica.** -222830001

FACIES HIDROQUÍMICA DEL PUNTO 232720019 (octubreo de 2014)

FACIES HIDROQUÍMICA DEL PUNTO 232720019 (octubre de 2014)

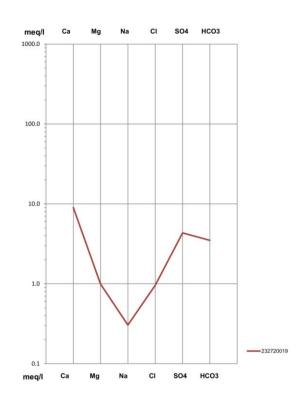


Figura 27. Gráficos de Piper y Schoeller-Berkaloff de la muestra de octubre de 2014 del punto 232720019

En este punto solo se tomó muestra en octubre de 2014. La facies hidroquímica de estas aguas es **sulfatada bicarbonatada-cálcica**.

• PUNTO NACIMIENTO DEL RÍO SAONA

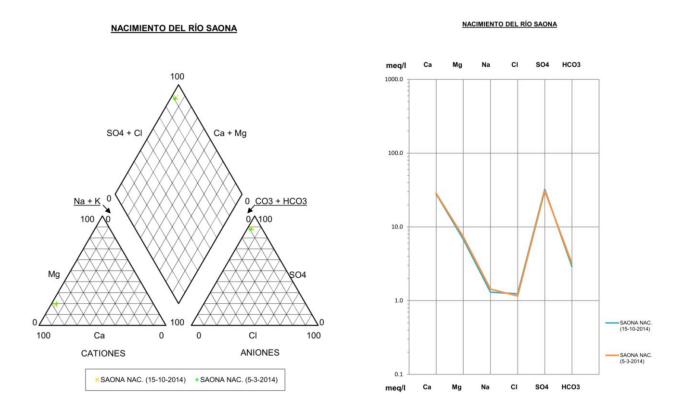


Figura 28. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero y octubre de 2014 del punto Nacimiento del río Saona

Estas muestras, tomadas en el manantial de Saona muestran una facies claramente **sulfatada cálcica**. Sus aguas no han variado a lo largo del periodo de muestreo tal como se puede observar en los perfiles del diagrama de Schoeller-Berkaloff.

• PUNTO POZO MARQUÉS

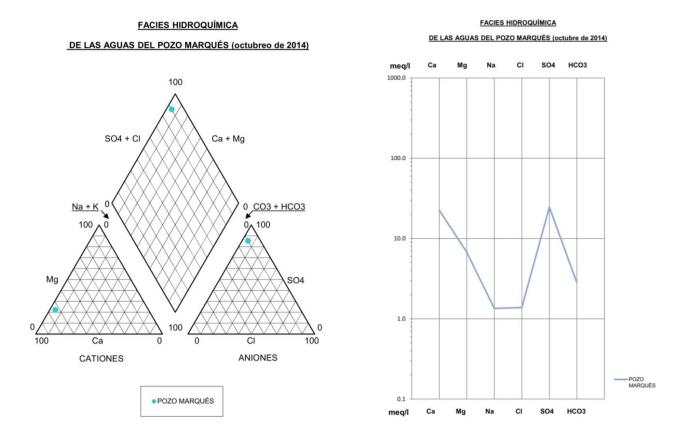


Figura 29. Gráficos de Piper y Schoeller-Berkaloff de la muestra de octubre de 2014 del punto Pozo Marqués

En este punto solo se tomó muestra en octubre de 2014.

Esta muestra cae en el diagrama de Piper dentro de los campos que definen una facies hidroquímica **sulfatada cálcica**.

8.3. ESTUDIO DE LAS MUESTRAS POR ACUÍFEROS

MUESTRAS DE LOS ACUÍFEROS TERCIARIOS – FEBRERO DE 2014

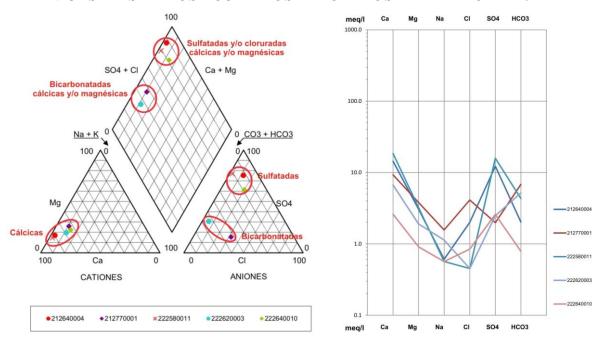


Figura 30. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de los acuíferos terciarios

• MUESTRAS DE LOS ACUÍFEROS TERCIARIOS – OCTUBRE DE 2014

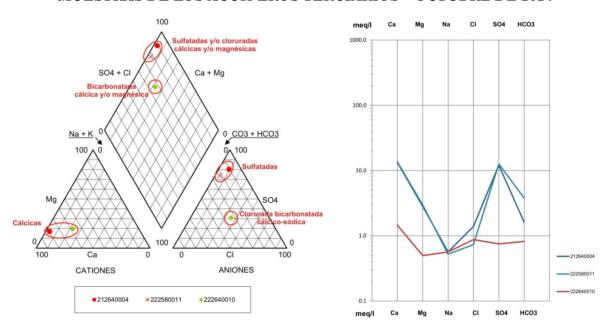


Figura 31. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de los acuíferos terciarios

Observando los gráficos anteriores, se comprueba que existe variedad de facies entre las muestras de aguas procedentes de niveles permeables terciarios, desde aguas bicarbonatadas cálcicas a aguas con facies cloruradas bicarbonatadas cálcico-sódicas, siendo, no obstante, predominantes las aguas sulfatadas cálcicas.

Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA
212770001		27/02/2014	Bicarbonatada cálcica
222620003	TERCIANIO	26/02/2014	Bicarbonatada cálcica
212640004		24/02/2014	Cultatada cálcica
212640004		22/10/2014	Sulfatada cálcica
222640010	TERCIARIO	24/02/2014	Sulfatada cálcica
222640010		22/10/2014	Clorurada bicarbonatada cálcico-sódica
222580011		28/02/2014	Sulfatada cálcica
		22/10/2014	Sulfataua Calcica

Tabla 5. Facies hidroquímicas de las muestras de aguas de acuíferos terciarios.

Esta diversidad está relacionada con los numerosos niveles permeables, hidráulicamente independientes, que existen a lo largo de la MASb Sierra de Altomira, de cuya compartimentación tectónica ya se ha hablado en los diferentes informes de seguimiento de la piezometría realizados.

• MUESTRAS DE LOS ACUÍFEROS CRETÁCICOS – FEBRERO DE 2014

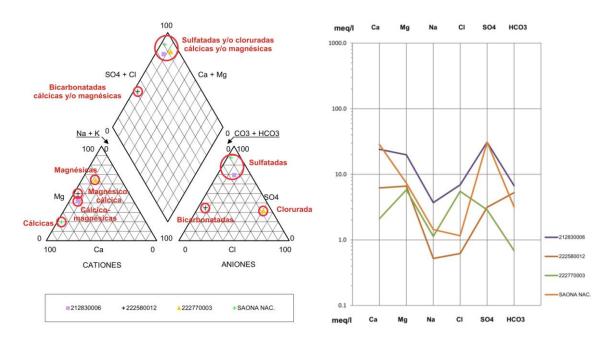


Figura 32. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de los acuíferos cretácicos

• MUESTRAS DE LOS ACUÍFEROS CRETÁCICOS – OCTUBRE DE 2014

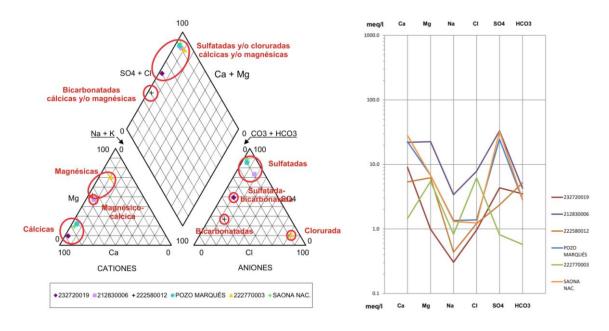


Figura 33. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de los acuíferos cretácicos

Como en el caso de las aguas procedentes de niveles permeables terciarios, las correspondientes a acuíferos cretácicos también presentan variedad de facies hidroquímicas.

Es un resultado lógico dado el elevado número de compartimentos, bloques o acuíferos independientes que existen en la zona, constituidos por estos materiales.

En este caso las facies varían de bicarbonatadas magnésicas a clorurado magnésicas, siendo también más frecuentes las aguas sulfatadas.

Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA
222580012		28/02/2014	Disarbonatada magnésica
222360012		22/10/2014	Bicarbonatada magnésica
212830006		27/02/2014	Sulfatada cálcica magnácica
212830006	2830006	23/10/2014	Sulfatada cálcico-magnésica
232720019		22/10/2014	Sulfatada bicarbonatada-cálcica
Pozo del Marqués	CRETÁCICO	15/10/2014	Sulfatada cálcica
Nacimiento		05/03/2014	
Saona		15/10/2014	Sulfatada cálcica
222770002		28/02/2014	
222770003		22/10/2014	Clorurado magnésica

Tabla 6. Facies hidroquímicas de las muestras de aguas de acuíferos cretácicos.

• MUESTRAS DE LOS ACUÍFEROS JURÁSICOS – FEBRERO DE 2014

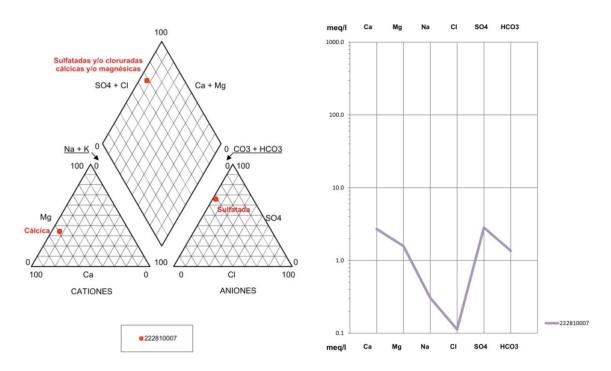


Figura 34. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de los acuíferos jurásicos

• MUESTRAS DE LOS ACUÍFEROS JURÁSICOS – OCTUBRE DE 2014

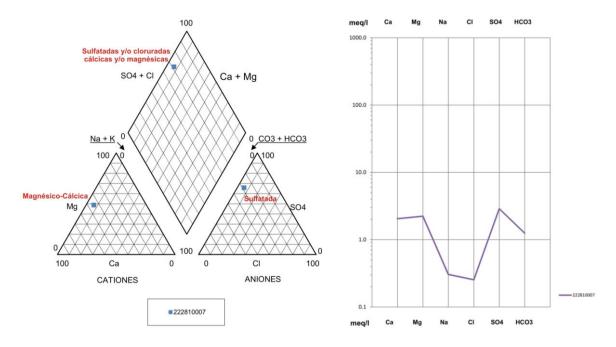


Figura 35. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de los acuíferos jurásicos

Solo se cuenta con los análisis procedentes de un punto de muestreo asignado a este acuífero, por lo que no se puede establecer una valoración general de las aguas del mismo.

En este punto el acuífero jurásico contiene aguas sulfatadas, teniendo la curiosidad de que entre el muestreo de febrero y el de octubre se pasa de una facies claramente sulfatada cálcica a una facies sulfatada magnésico cálcica.

Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA
222810007	JURÁSICO	27/02/2014	Sulfatada cálcica
		23/10/2014	Sulfatada magnésico-cálcica

Tabla 7. Facies hidroquímicas de las muestras de aguas del acuífero Jurásico.

• MUESTRAS DE AGUAS MEZCLA DE LOS ACUÍFEROS TERCIARIO+CRETÁCICO – FEBRERO DE 2014

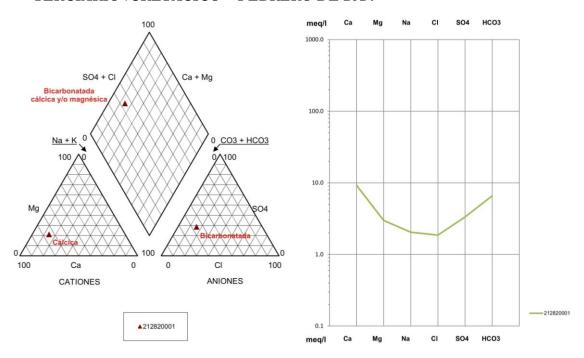


Figura 36. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de aguas mezcla de los acuíferos terciarios y cretácicos

• MUESTRAS DE AGUAS MEZCLA DE LOS ACUÍFEROS TERCIARIO+CRETÁCICO – OCTUBRE DE 2014

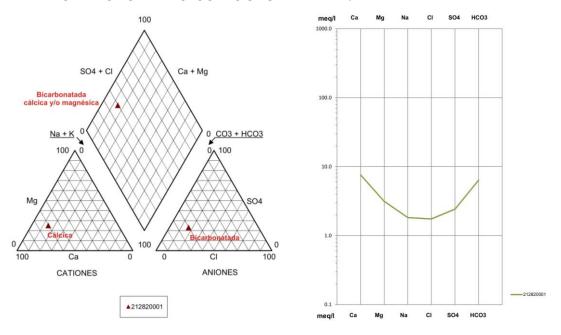


Figura 37. Gráficos de Piper y Schoeller-Berkaloff de las muestras de octubre de 2014 de aguas mezcla de los acuíferos terciarios y cretácicos

Las aguas de este punto de muestreo se clasifican como bicarbonatadas-cálcicas. Pero como en el caso anterior solo se cuenta con un punto de control lo que impide considerar que este tipo de aguas se dan en las muestras de aguas de mezcla entre acuíferos terciarios y cretácicos y más teniendo en cuenta la diversidad de facies que se han observado (véase apartados anteriores) en las muestras asignadas de forma explícita a los mismos.

Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA
212820001	TERC+CRET	27/02/2014	Disarbanatada cálcica
212020001	TENC+CRET	23/10/2014	Bicarbonatada cálcica

Tabla 8. Facies hidroquímicas de las muestras de aguas mezcla de niveles terciarios y cretácicos.

• MUESTRAS DE AGUAS MEZCLA DE LOS ACUÍFEROS CRETÁCICO+JURÁSICO – FEBRERO DE 2014

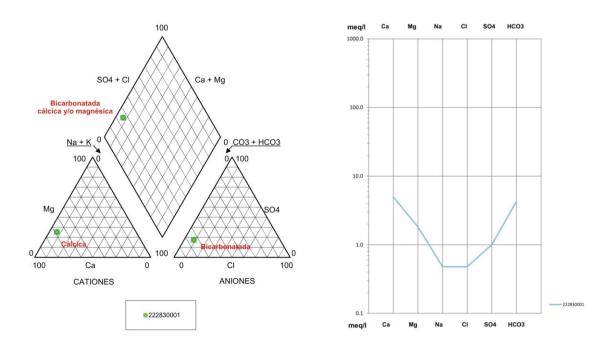


Figura 38. Gráficos de Piper y Schoeller-Berkaloff de las muestras de febrero de 2014 de aguas mezcla de los acuíferos cretácicos y jurásicos

Misma situación tenemos en este caso, en el que un solo punto de control define una facies bicarbonatada-cálcica para el agua de mezcla entre los acuíferos cretácicos y jurásicos.

Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA
222830001	CRET+JURA	28/02/2014	Bicarbonatada cálcica

Tabla 9. Facies hidroquímicas de las muestras de aguas mezcla de niveles cretácicos y jurásicos.

8.4. ESTUDIO ZONAL DE LAS MUESTRAS

En la figura 39, se puede comprobar cómo, en líneas generales, no se puede establecer una zonación clara de las aguas subterráneas según sus facies hidroquímicas. La ausencia de datos analíticos del tercio septentrional imposibilita una interpretación de la hidroquímica de las aguas subterráneas en este sector.

No obstante, se realiza a continuación un análisis de las facies hidroquímicas por sectores, en función de la zonación establecida a partir de los registros de piezometría de los niveles permeables del Cretácico, según las campañas de medida llevadas a cabo desde el año 2012.

• SECTOR SURORIENTAL DE LA MASb

Esta zona, que se encuadra en el margen suroriental de la MASb, parece constituir un acuífero o sector acuífero independiente, sobre todo si únicamente se tienen en cuenta los niveles permeables del Cretácico.

En el informe 5º Informe de evolución piezométrica de la Masa de Agua Subterránea "Sierra de Altomira" (041.001)". Años 1982-2014. (IGME 2014), se indica que este margen, desde la sierra de Zafra y Villares del Saz, al norte, hasta las elevaciones cercanas a Villargordo del Marquesado y Castillo de Garcimuñoz, en el extremo sureste de la MASb, se puede considerar que presenta continuidad hidráulica. Sin embargo, las facies hidroquímicas de las cuatro muestras de la zona son todas distintas, incluso las muestras del punto 222640010 se clasifican con una facies hidroquímica diferente entre febrero y octubre de 2014. Bien es cierto, que dos de las muestras son de aguas de niveles terciarios y las otras dos de cretácicos. Aun así, tampoco hay correspondencia de facies dentro de los mismos niveles acuíferos ya que dentro de los tramos permeables del Terciario las facies presentes son en general sulfatadas cálcicas pero con una muestra clasificada en octubre de 2014 como clorurada bicarbonatada cálcico-sódica. Las muestras pertenecientes al Cretácico son por su parte clasificadas como bicarbonatada magnésica y sulfatada bicarbonatada-cálcica.

SECTOR SURORIENTAL						
Nº IGME / NOMBRE	ACUÍFERO	FACIES HIDROQUÍMICA				
222580012	CRETÁCICO	28/02/2014	Bicarbonatada magnésica			
222580012	CRETACICO	22/10/2014	Bicarbonatada magnesica			
222580011	- TERCIARIO	28/02/2014	Sulfatada cálcica			
222360011		22/10/2014	Sullatada Calcica			
222640010		24/02/2014	Sulfatada cálcica			
222040010		22/10/2014	Clorurada bicarbonatada cálcico-sódica			
232720019	CRETÁCICO	22/10/2014	Sulfatada bicarbonatada-cálcica			

Tabla 10. Facies hidroquímicas de las muestras del sector acuífero suroriental.

Estas diferencias, ya mostradas en los anteriores apartados, indican por un lado la posible distinta evolución química de las aguas y por otro refuerzan la idea de la alta compartimentación en sectores acuíferos independientes existente en la zona, fundamentalmente dentro de los tramos permeables terciarios y cretácicos.

• SECTOR CENTRAL DE LA MASb

Esta zona ocuparía la mitad sur de la MASb Sierra de Altomira, quedando encuadrada entre el río Gigüela, como límite norte, y los ríos Záncara y Toconar-Saona al este y oeste respectivamente.

En este sector, tal como se indica en el mencionado "5º Informe de evolución piezométrica de la Masa de Agua Subterránea Sierra de Altomira (041.001). Años 1982-2014". (IGME 2014), los niveles permeables del Cretácico constituirían, como mínimo, un acuífero independiente dentro de la MASb que únicamente en su extremo sureste podría tener conexión hidráulica con el sector acuífero suroriental (área de Pinarejo).

El sector actúa como una divisoria entre los acuíferos orientales y los occidentales, de tal forma que drena sus recursos hacia el río Záncara por el este y al Toconar-Saona por el oeste.

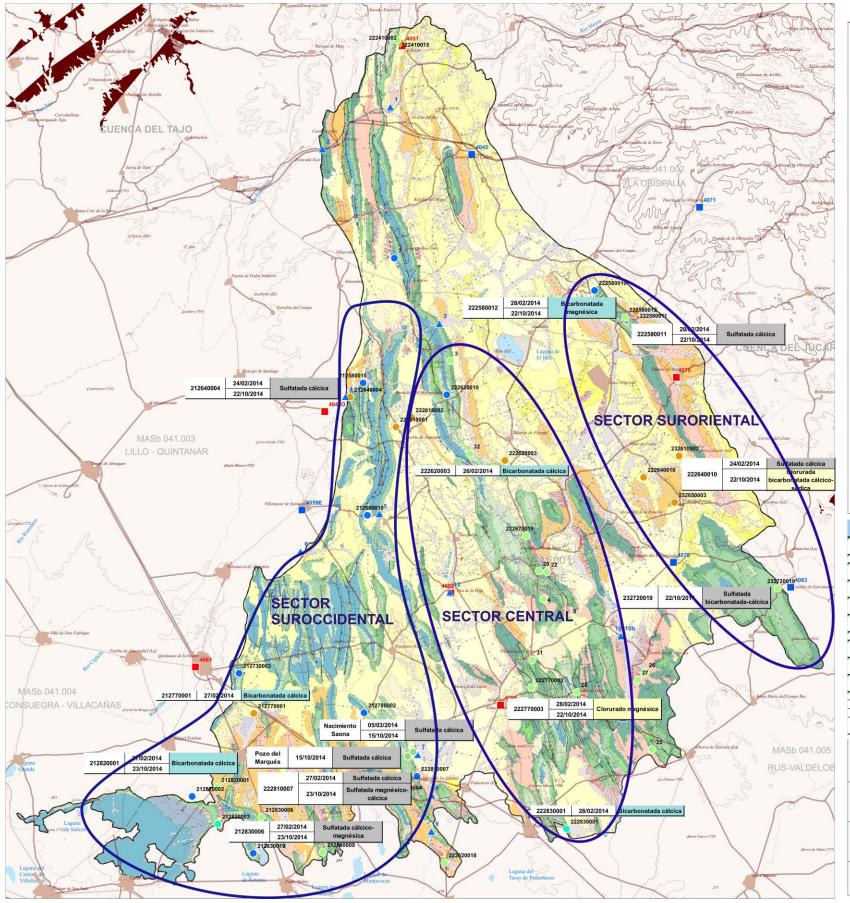
SECTOR CENTRAL						
Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA			
222620003	TERCIARIO	26/02/2014	Bicarbonatada cálcica			
222770002	CRETÁCICO	28/02/2014	Clarurada magnásica			
222770003	CRETACICO	22/10/2014	Clorurado magnésica			
222830001	CRET+JURA	28/02/2014	Bicarbonatada cálcica			

Tabla 11. Facies hidroquímicas de las muestras del sector acuífero central.

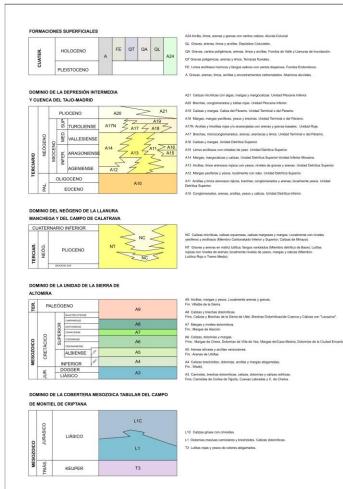
En este sector se han definido dos facies hidroquímicas, correspondientes a aguas bicarbonatado cálcicas y clorurado magnésicas. Las tres muestras se han asociado a niveles permeables distintos por lo que no se puede establecer una relación directa entre las mismas. Así, tenemos una muestra perteneciente a aguas de los niveles permeables del Terciario, otra a los del Cretácico y una tercera que se considera que corresponde a aguas procedentes de niveles cretácicos y jurásicos conjuntamente.

• SECTOR SUROCCIDENTAL DE LA MASb

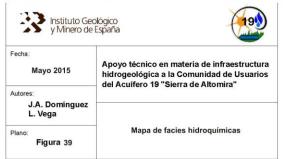
Este tercer sector acuífero ocuparía el margen occidental de la MASb Sierra de Altomira, entre este límite por el oeste, el río Toconar por el este y el río Gigüela ejerciendo de divisoria por el norte.


Los estudios de la piezometría realizados no permiten individualizar sectores menores incluidos en esta zona sin embargo, es posible que existan varios bloques o subsectores hidráulicamente independientes.

En cuanto a las facies hidroquímicas de las muestras de este sector existe menos variedad que en los dos anteriores, pudiendo englobar las muestras en dos grandes grupos, aguas sulfatadas y aguas bicarbonatadas, situándose estas últimas además en el extremo más suroccidental de la MASb.


De las siete muestras incluidas en este sector sólo la correspondiente al punto 212640004 se sitúa en la mitad norte de la zona, el resto se concentran en el tercio más meridional de la misma.

SECTOR SUROCCIDENTAL						
Nº IGME / NOMBRE	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA			
212640004	TERCIARIO	24/02/2014	Sulfatada cálcica			
212040004	TERCIARIO	22/10/2014	Sulfatada Calcica			
212830006		27/02/2014	Sulfatada cálcico magnácica			
212830000		23/10/2014	Sulfatada cálcico-magnésica			
Pozo del Marqués	CRETÁCICO	15/10/2014	Sulfatada cálcica			
Nacimiento Saona		05/03/2014	Sulfatada cálcica			
Naciiilleiito Saoiia		15/10/2014	Sullatada Calcica			
222210007	JURÁSICO	27/02/2014	Sulfatada cálcica			
222810007	JURASICO	23/10/2014	Sulfatada magnésico-cálcica			
212770001	TERCIARIO	27/02/2014	Bicarbonatada cálcica			
24202004	T500 005T	27/02/2014	Discurbo noto do cálcico			
212820001	TERC+CRET	23/10/2014	Bicarbonatada cálcica			


Tabla 12. Facies hidroquímicas de las muestras del sector acuífero suroccidental.

LEYENDA GEOLÓGICA

Nº IGME / NOMBRE	COORD X (ED 50)	COORD Y (ED 50)	ACUÍFERO	CAMPAÑAS	FACIES HIDROQUÍMICA	
040040004	E40000	4400477	TERRIL DIG	24/02/2014	0 11 11 11 11	
212640004	510882	4408477	TERCIARIO	22/10/2014	Sulfatada cálcica	
212770001	501630	4378056	MIOCENO	27/02/2014	Bicarbonatada cálcica	
212820001	498113	4370956	TERC+CRET	27/02/2014	District of the second	
212820001	498113	4370956	IERC+CRET	23/10/2014	Bicarbonatada cálcica	
04000000	500054	4000004	CRETÁCICO	27/02/2014	0.51.1.01.1.1.1	
212830006	502354	4368084	CRETACICO	23/10/2014	Sulfatada cálcico-magnésica	
	E00000			28/02/2014	0.45	
222580011	538366	4416690	Q+TERCIARIO	22/10/2014	Sulfatada cálcica	
	537348 44		00000000	28/02/2014		
222580012		4416181	CRETACICO	22/10/2014	Bicarbonatada magnésica	
222620003	525787	4402385	MIOCENO	26/02/2014	Bicarbonatada cálcica	
000040040	500400	4400775	MODENO	24/02/2014	Sulfatada cálcica	
222640010	539126	4400775	MIOCENO	22/10/2014	Clorurada bicarbonatada cálcico-sódio	
	500011	4000544	CRETÁCICO	28/02/2014		
222770003	528341	4380544	CRETACICO	22/10/2014	Clorurado magnésica	
202040007	547004	4070007	II ID A CICCO	27/02/2014	Sulfatada cálcica	
222810007	517321	4372007	JURÁSICO	23/10/2014	Sulfatada magnésico-cálcica	
222830001	531713	4366943	CRET+JURA	28/02/2014	Bicarbonatada cálcica	
232720019	552053	4390077	CRETÁCICO	22/10/2014	Sulfatada bicarbonatada-cálcica	
Pozo del Marqués	517558	4373449	CRETÁCICO	15/10/2014	Sulfatada cálcica	
	547004	4074000	operious.	05/03/2014		
Nacimiento Saona	517391 4374080	4374080	CRETÁCICO	15/10/2014	Sulfatada cálcica	

9. ESTUDIO ELEMENTAL

En este apartado se realiza un análisis de los contenidos elementales de cada muestra de forma individual teniendo en cuenta, además, el acuífero captado o drenado.

Los resultados analíticos se compararán con los límites establecidos por la reglamentación vigente para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero) con el fin de tener unos parámetros guía indicativos de la calidad química de cada nuestra.

En líneas generales, y para el caso que nos ocupa, se hará especial hincapié en aquéllos elementos que pueden afectar o ser perjudiciales para el abastecimiento de la población o su uso agrícola, por lo que elementos como los nitratos, sulfatos o cloruros se analizarán con más detalle, así como la conductividad eléctrica, que es un reflejo del mayor o menor contenido en sales de las aguas.

En esta línea, si se observa la tabla 13, se comprueba de forma rápida que solo las muestras del punto 222770003 contienen todos sus elementos, en ambos muestreos (febrero y octubre de 2014), por debajo de los límites admisibles por la legislación vigente para las aguas de consumo humano.

Destaca también el alto contenido en sulfatos que se han registrado en varios puntos de muestreo, en algunos, muy por encima del límite establecido de 250 mg/L para las aguas de bebida.

De igual forma, es evidente el elevado contenido en nitratos de muchas muestras.

De todas estas características se trata, de forma individualizada, a continuación, haciendo referencia a determinadas formaciones geológicas que pueden ser el origen natural de las altas concentraciones en sulfatos de algunas aguas. Parte de la información aquí expuesta en este sentido ha sido extraída de un documento inédito realizado por D. Julio César López Gutiérrez.

Nº IGME / NOMBRE	X (ED 50)	Y (ED 50)	ACUÍFERO	FECHA	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Cl (mg/L)	SO4 (mg/L)	HCO3 (mg/L)	CO3 (mg/L)	NO3 (mg/L)	NO2 (mg/L)	NH4 (mg/L)	PO4 (mg/L)	SiO2 (mg/L)	Oxidabilidad al MnO4K (mg/L)	Conductividad 20º (μS/cm)	рН	Rs 180 (mg/L)		Cd (μg/l)	Cr (μg/l)	Cu (μg/l)	Fe (μg/l)	Hg (μg/l)	Mn (μg/l)	Pb (μg/l)	Se (μg/l)		Fluoruro (mg/L)	CN* (mg/L)
212640004	510882	4408477	TERCIARIO	24/02/2014	14	9	288	37	71	588	123	0	66	0	0	0	13,5	1,1	1216	7,51	904,4	2,15	< 0,4	0,7	0,53	< 30	< 1	3,69	< 0,4	<1	31,3	<0,5	<0,010
				22/10/2014	13	10	266	34	49	580	98	0	76	0	0	0	14,9	0,9	1339	7,94													<u> </u>
212770001	501630	4378056	MIOCENO	27/02/2014	36	2	186	46	146	95	416	0	66	0	0	0	20,1	0,9	1112	6,92	795,8	0,14	< 0,2	0,18	< 0,2	528	< 0,5	17,1	0,21	1,86	1,97	<0,5	<0,010
212820001	498113	4370956	TERC+CRET	27/02/2014	47	4	184	36	66	160	400	0	116	0	0	0	25,2	3,2	1089	6,86	781,6	0,96	< 0,2	0,36	0,25	15	< 0,5	1,07	0,46	3,12	40,8	<0,5	<0,010
	.50115			23/10/2014	42	3	152	38	62	116	388	0	130	0	0	0	27.1	0,6	1089	7,52													
212830006	502354	4368084	CRETÁCICO	27/02/2014	85	9	480	240	245	1480	410	0	56	0	0	0	15,2	1,0	4240	7,12	3061,2	0,41	< 0,8	0,43	< 0,8	2704	< 2	42,4	< 0,8	2,24	21,4	1,12	<0,010
212050000	302331	1300001	CHETACICO	23/10/2014	78	9	440	272	278	1590	260	0	46	0,82	0,59	0	15,8	1,1	4380	7,57													
222580011 53	538366	4416690	Q+TERCIARIO	28/02/2014	13	2	370	39	16	762	264	0	32	0	0	0	13,9	1,0	1468	7,15	1052,2	1,36	< 0,4	0,63	< 0,4	< 30	< 1	1,36	1,09	< 1	15	<0,5	<0,010
	330300			22/10/2014	12	3	272	36	26	604	230	0	27	0	0	0	14,6	0,7	1352	7,72													
222580012 5	537348	348 4416181	CRETACICO	28/02/2014	12	7	124	80	22	151	320	0	240	0	0	0	13,8	1,0	1082	7,42	793,6	0,34	< 0,2	0,3	0,5	< 15	< 0,5	< 0,5	< 0,2	0,62	4,91	<0,5	<0,010
222300012	337340			22/10/2014	10	9	107	75	43	113	316	0	200	0	0	0	14,7	1	969	7,87													
222620003	525787	4402385	MIOCENO	26/02/2014	26	1	134	23	16	119	316	0	70	0	0	0	23,8	0,9	744	7,26	554,4	2,39	< 0,2	0,32	0,46	< 15	< 0,5	1,01	< 0,2	2,52	37,7	<0,5	<0,010
222640010	539126	4400775	MIOCENO	24/02/2014	13	2	52	11	30	124	48	0	0	0	0	0	0,1	1,1	431	7,17	336	0,06	< 0,2	< 0,05	< 0,2	16,2	< 0,5	178	< 0,2	< 0,5	2,41	<0,5	<0,010
				22/10/2014	13	1	29	6	31	36	50	0	0	0	0	0	0,5	1,2	259	7,85													
222770003	528341	4380544	4 CRETÁCICO	28/02/2014	26	3	42	70	195	138	42	0	0	0	0	0	0,2	3,0	857	7,20	617,6	0,08	< 0,2	< 0,05	< 0,2	< 15	< 0,5	4,69	< 0,2	< 0,5	1,35	1,11	<0,010
	020011			22/10/2014	19	3	29	66	219	39	35	0	0	0	0	0	0,3	2,2	813	7,76													
222810007	E17221	4372007	JURÁSICO	27/02/2014	7	1	54	19	4	136	83	0	8	0	0	0	0,9	9,2	445	7,02	322,4	0,1	< 0,2	< 0,05	17,8	61,7	< 0,5	75,5	< 0,2	< 0,5	6,27	<0,5	<0,010
222810007	317321			23/10/2014	7	1	41	27	9	138	76	0	0	0	0	0	0,2	7,2	423	7,66													
222830001	531713	4366943	CRET+JURA	28/02/2014	11	0	99	22	17	48	260	0	74	0	0	0	12,2	0,6	607	7,17	444,4	0,2	< 0,2	0,41	< 0,2	< 15	< 0,5	0,53	< 0,2	1,18	3,04	<0,5	<0,010
232720019	552053	4390077	CRETÁCICO	22/10/2014	7	0	180	12	34	208	213	0	70	0	0	0	15,5	0,6	882	7,72													
Pozo del Marqués	517558	4373449	CRETÁCICO	15/10/2014	31	2	450	82	49	1180	173	0	39	0	0	0	21,3	0,5	3050	7,68													
Nacimiento	F4700:	4274055	CRETÁCICO	05/03/2014	33	2	570	89	41	1476	195	0	40	0	0	0	47,9	0,5	3420	6,62	2489,6	1,29	<0.8	0,66	<0.8	<60	<2	<2	<0.8	3,03	4,37		
Saona	21/391	4374080		15/10/2014	30	2	560	82	44	1550	177	0	38	0	0	0	19,6	0,5	3420	7,63													
	Criterios sanitarios de la calidad del agua de consumo humano (Real Decreto 140/2003 de 7 de febrero)				200				250	250			50	0,5	0,5			5	2500	6,5- 9,5		10	5	50	2000	200	1	50	25	10		1,5	0,05

^{*}CN: cianuro

Tabla 13. Contenidos elementales de las muestras de la red de observación de la calidad de las aguas subterráneas establecida por el IGME en la MASb Sierra de Altomira

9.1. ESTUDIO ELEMENTAL INDIVIDUALIZADO DE LAS MUESTRAS

PUNTO 212640004

Facies hidroquímica: sulfatada cálcica.

Acuífero/s: Terciarios. Unidad Paleógena inferior.

Sector: suroccidental

Elementos destacados: sulfatos y nitratos

Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
242640004	24/02/2014	14	9	288	37	71	588	123	0	66	0	0	0	13,5	1,1	1216	7,51
212640004	22/10/2014	13	10	266	34	49	580	98	0	76	0	0	0	14,9	0,9	1339	7,94
Concentraci	ones en mg/L;	Cond	uctiv	idad e	léctri	ca en	μS/cn	n; pH en	unidad	les de	рН						

Tabla 14. Resultados analíticos del punto de observación 212640004 (campañas de febrero y octubre de 2014)

En este punto de observación, situado en lo que se ha definido como sector suroccidental dentro de la MASb Sierra de Altomira, se captan aguas del terciario, concretamente de los niveles de areniscas grises y amarillentas del Eoceno superior-Oligoceno inferior. Pese a encontrarse cerca de afloramientos cretácicos del Cenomaniense – Coniaciense, compuestos por dolomías masivas, calizas y margas de las Formaciones Ciudad Encantada y Casa Medina, dada la escasa profundidad de este pozo (23 m), se descarta que capte aguas procedentes de dichos materiales.

Las aguas de esta captación exceden el contenido en nitratos y sulfatos establecido como límite por la Reglamentación vigente para las aguas de consumo público. El origen de estos elementos es, en cuanto a los sulfatos, debido a posibles contactos con materiales yesíferos presentes en algunas de las formaciones terciarias de la zona. Los nitratos son consecuencia de la actividad agrícola y del uso de fertilizantes.

PUNTO 212770001

Facies hidroquímica: bicarbonatada cálcica.

Acuífero/s: Mioceno. Sector: suroccidental

Elementos destacados: nitratos

Nº IGME	FECHA	Na	К	Ca	Mg	Cl	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
212770001	27/02/2014	36	2	186	46	146	95	416	0	66	0	0	0	20,1	0,9	1112	6,92
Concentraci	ones en mg/L:	Cond	lucti	ividad	elécti	ica en	uS/cm	n: pH en	unidad	les de	οН						

Tabla 15. Resultados analíticos del punto de observación 212770001 (campaña de febrero de 2014)

Este sondeo capta aguas del Mioceno, dentro del definido como sector suroccidental de la MASb Sierra de Altomira. Los niveles permeables atravesados se incluyen dentro de una formación compuesta por brechas y conglomerados calizos anaranjados. Se intercalan niveles de arcillas con fragmentos cuarcíticos.

El contenido en nitratos, de origen agrícola, excede aunque mínimamente el límite establecido para aguas de consumo humano.

• PUNTO 212820001

Facies hidroquímica: bicarbonatada cálcica.

Acuífero/s: Cretácico superior.

Sector: suroccidental

Elementos destacados: nitratos

Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
24 2020004	27/02/2014	47	4	184	36	66	160	400	0	116	0	0	0	25,2	3,2	1089	6,86
212820001	23/10/2014	42	3	152	38	62	116	388	0	130	0	0	0	27.1	0,6	1089	7,52
Concentracio	ones en mg/L:	Cond	lucti	ividad	eléctr	ica e	n uS/c	m: pH ei	n unida	des de	Hq						

Tabla 16. Resultados analíticos del punto de observación 212820001 (campañas de febrero y octubre de 2014)

Este sondeo atraviesa materiales detríticos y carbonatados del terciario. Concretamente capta aguas del Mioceno, dentro del definido como sector suroccidental de la MASb Sierra de Altomira. Los niveles permeables atravesados se incluyen dentro de una formación compuesta por brechas y conglomerados calizos anaranjados. Se intercalan niveles de arcillas con fragmentos cuarcíticos.

El contenido en nitratos excede sensiblemente el límite establecido para aguas de consumo humano.

PUNTO 212830006

Facies hidroquímica: sulfatada cálcico-magnésica.

Acuífero/s: Cretácico superior. Probable tránsito Terciario-Cretácico

Sector: suroccidental

Elementos destacados: cloruros, sulfatos, nitratos, nitritos, amoniaco y elevada

conductividad.

Nº IGME	FECHA	Na	к	Ca	Mg	Cl	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
242020000	27/02/2014	85	9	480	240	245	1480	410	0	56	0	0	0	15,2	1,0	4240	7,12
212830006	23/10/2014	78	9	440	272	278	1590	260	0	46	0,82	0,59	0	15,8	1,1	4380	7,57
Concentraci	ones en mg/L;	Cond	lucti	ividad	eléctr	ica en	μS/cm;	pH en u	nidade	es de p	Н						

Tabla 17. Resultados analíticos del punto de observación 212830006 (campañas de febrero y octubre de 2014)

Este sondeo, de 290 m de profundidad atraviesa desde la superficie paquetes detríticos terciarios compuestos por areniscas grises y blancas y conglomerados cuarcíticos y poligénicos para alcanzar el conjunto de transición entre el Terciario y el Cretácico formado por margas, yesos, brechas calcáreas, calizas, areniscas y conglomerados.

Los resultados analíticos confirman la influencia de los niveles de yesos que elevan sensiblemente el contenido en sulfatos de las aguas y de otras sales, lo que se refleja también en una conductividad elevada.

El contenido en nitratos solo supera mínimamente en la muestra de febrero de 2014 el límite de 50 mg/L establecido como máximo para aguas de bebida.

PUNTO 222580011

Facies hidroquímica: sulfatada cálcica.

Acuífero/s: Cuaternario. Probable oligoceno superior.

Sector: suroriental

Elementos destacados: sulfatos.

Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222580011	28/02/2014	13	2	370	39	16	762	264	0	32	0	0	0	13,9	1,0	1468	7,15
222580011	22/10/2014	12	З	272	36	26	604	230	0	27	0	0	0	14,6	0,7	1352	7,72
Concentracio	ones en mg/L;	Cond	lucti	ividad	eléctr	rica e	n μS/c	m; pH e	n unida	des de	рH						

Tabla 18. Resultados analíticos del punto de observación 222580011 (campañas de febrero y octubre de 2014)

Esta muestra se obtiene de un pequeño pozo de apenas 10 m de profundidad que se encuentra excavado en terrenos detríticos del Cuaternario (gravas y cantos poligénicos, arenas, limos y arcillas). El contenido elevado en sulfatos hace pensar en la influencia de terrenos yesíferos, por lo que no se descarta el contacto de las aguas con los niveles de areniscas, arcillas y limos con margas y yesos del Oligoceno superior.

• PUNTO 222580012

Facies hidroquímica: bicarbonatada magnésica. Acuífero/s: Albiense (Cretácico inferior).

Sector: suroriental

Elementos destacados: nitratos.

Nº IGME	FECHA	Na	К	Са	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222580012	28/02/2014	12	7	124	80	22	151	320	0	240	0	0	0	13,8	1,0	1082	7,42
222580012	22/10/2014	10	9	107	75	43	113	316	0	200	0	0	0	14,7	1	969	7,87
Concentraci	ones en ma/l·	Cond	lucti	hchivi	olácti	rica o	n us/c	m·n∐ o	n unid	doc do	n L						

Tabla 19. Resultados analíticos del punto de observación 222580012 (campañas de febrero y octubre de 2014)

El único elemento destacado en el análisis de estas aguas, los nitratos, es de origen antrópico, por la actividad agrícola. Es habitual, en captaciones de escasa profundidad situadas en zonas dedicadas al cultivo, que sus aguas reflejen altas concentraciones en elementos asociados al uso de fertilizantes y/o plaguicidas.

PUNTO 222620003

Facies hidroquímica: bicarbonatada cálcica.

Acuífero/s: Cuaternario.

Sector: central.

Elementos destacados: nitratos.

Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222620003	26/02/2014	26	1	134	23	16	119	316	0	70	0	0	0	23,8	0,9	744	7,26
Concentracio	ones en mg/L;	Cond	lucti	ividad	elécti	rica e	n μS/c	m; pH e	n unida	ades de	pH				•		

Tabla 20. Resultados analíticos del punto de observación 222620003 (campaña de febrero de 2014)

Las aguas de esta captación presentan todos sus elementos dentro de los límites fijados por la reglamentación para aguas de bebida, únicamente el contenido en nitratos excede tal límite y se debe a la actividad agrícola realizada en la zona.

PUNTO 222640010

Facies hidroquímica: sulfatada cálcica (febrero de 2014); clorurada bicarbonatada cálcico-sódica (octubre de 2014).

Acuífero/s: Cuaternario. Sector: suroriental.

Elementos destacados: ninguno.

Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222640010	24/02/2014	13	2	52	11	30	124	48	0	0	0	0	0	0,1	1,1	431	7,17
222640010	22/10/2014	13	1	29	6	31	36	50	0	0	0	0	0	0,5	1,2	259	7,85
Concentracio	ones en mg/L:	Cond	lucti	ivida	d eléc	trica	en uS/	cm: pH	en unic	lades d	e nH						

Tabla 21. Resultados analíticos del punto de observación 222640010 (campañas de febrero y octubre de 2014)

Las aguas de esta captación son de buena calidad, con todos los parámetros por debajo de los límites legales establecidos para las aguas de consumo humano.

• PUNTO 222770003

Facies hidroquímica: clorurado-magnésica.

Acuífero/s: Formación Arenas de Utrillas (Cretácico inferior).

Sector: central.

Elementos destacados: ninguno.

Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222770003	28/02/2014	26	3	42	70	195	138	42	0	0	0	0	0	0,2	3,0	857	7,20
222//0003	22/10/2014	19	3	29	66	219	39	35	0	0	0	0	0	0,3	2,2	813	7,76
Concentracio	nes en mg/l:	Cond	ucti	vidad	d eléct	trica e	n uS/c	m: nH ei	n unida	ides de	рH						

Tabla 22. Resultados analíticos del punto de observación 222770003 (campañas de febrero y octubre de 2014)

Este sondeo capta recursos hídricos de los niveles arenosos del Albiense y en esta zona no presenta ningún elemento químico que exceda de los límites de calidad fijados por la Reglamentación vigente para aguas de consumo público.

PUNTO 222810007

Facies hidroquímica: sulfatada cálcica (febrero de 2014); sulfatada magnésico-cálcica

(octubre de 2014)

Acuífero/s: Grupo Chelva (Jurásico).

Sector: suroccidental.

Elementos destacados: oxidabilidad al MnO₄K.

Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222810007	27/02/2014	7	1	54	19	4	136	83	0	8	0	0	0	0,9	9,2	445	7,02
222810007	23/10/2014	7	1	41	27	9	138	76	0	0	0	0	0	0,2	7,2	423	7,66
Concentraci	ones en mg/L;	Cond	lucti	ivida	d eléc	trica	en μS,	/cm; pH	en uni	dades	de pH				<u> </u>	<u> </u>	

Tabla 23. Resultados analíticos del punto de observación 222810007 (campañas de febrero y octubre de 2014)

Las aguas de esta perforación, de 235 m de profundidad, se considera que proceden del acuífero Jurásico.

Ninguno de los elementos mayoritarios excede los límites establecidos de potabilidad para aguas de boca. Incluso las concentraciones elementales se puede decir que son sensiblemente bajas.

No obstante, el parámetro de oxidabilidad al MnO₄K, que es un método empleado para conocer la cantidad de materia orgánica presente en el agua, marca valores por encima de los límites máximos permitidos.

Las sustancias de origen orgánico presentes en el agua se tratan con un reactivo oxidante (MnO_4K), del gasto de reactivo empleado en la oxidación se deduce el contenido en materia orgánica en la muestra analizada. La Reglamentación Técnico-Sanitaria española para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero) establece un nivel máximo en 5 mg/L de O_2/L de agua.

Si bien pueden haber interferencias en este tipo de análisis debido a que haya sustancias inorgánicas susceptibles de ser oxidadas (sulfuros, sulfitos, yoduros, cloruros, etc.), en el caso que nos ocupa, ninguno de estos elementos presenta una concentración elevada, y ya que en ambos muestreos (febrero y octubre de 2014) se obtiene un valor de Oxidabilidad alto parece claro que existe cierta contaminación por materia orgánica.

PUNTO 222830001

Facies hidroquímica: bicarbonatada cálcica

Acuífero/s: Cretácico y Jurásico.

Sector: central.

Elementos destacados: nitratos.

Nº IGME	FECHA	Na	к	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222830001	28/02/2014	11	0	99	22	17	48	260	0	74	0	0	0	12,2	0,6	607	7,17
Concentraci	ones en mg/L;	Cond	lucti	ivida	d eléc	trica	en μS/	cm; pH	en unic	dades d	le pH						

Tabla 24. Resultados analíticos del punto de observación 222830001 (campaña de febrero de 2014)

El único elemento que excede los límites fijados por la reglamentación vigente para aguas de consumo público son los nitratos, cuyo origen está ligado a la actividad agrícola desarrollada en la zona.

PUNTO 232720019

Facies hidroquímica: sulfatada bicarbonatada cálcica

Acuífero/s: Cretácico. Sector: suroriental.

Elementos destacados: nitratos

Nº IGME	FECHA	Na	К	Са	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
232720019	22/10/2014	7	0	180	12	34	208	213	0	70	0	0	0	15,5	0,6	882	7,72
Concentracio	ones en mg/L:	Cond	lucti	ividad	elécti	ica e	n uS/c	m: pH e	n unida	ades de	Ha						

Tabla 25. Resultados analíticos del punto de observación 232720019 (campaña de octubre de 2014)

Los nitratos son el único parámetro que excede los límites legales para aguas de bebida. Como en el resto de casos su origen es antrópico por actividad agrícola.

• PUNTO NACIMIENTO DEL RÍO SAONA

Facies hidroquímica: sulfatada cálcica

Acuífero/s: Cretácico (influencia de los niveles Terciarios).

Sector: suroccidental.

Elementos destacados: sulfatos y conductividad.

NOMBRE	FECHA	Na	к	Са	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
Nacimiento	05/03/2014	33	2	570	89	41	1476	195	0	40	0	0	0	47,9	0,5	3420	6,62
Saona	15/10/2014	30	2	560	82	44	1550	177	0	38	0	0	0	19,6	0,5	3420	7,63
Concentracion	Concentraciones en mg/L: Conductividad eléctrica en uS/cm: nH en unidades de nH																

Tabla 26. Resultados analíticos del punto de observación nacimiento del río Saona (campañas de febrero y octubre de 2014)

Este manantial, cuyas aguas afloran en el contacto entre los niveles carbonatados (permeables) del Cretácico con las arcillas, limos y arenas y niveles de yesos del Mioceno (nivel impermeable), muestra unas aguas con altos contenidos en sulfatos, fruto del lavado de los niveles de yesos.

La elevada concentración en estas sales hace que el valor de la conductividad eléctrica también sea alto.

Estas características químicas hicieron que en el siglo pasado estas aguas se emplearan para el baño con fines terapéuticos y lúdicos, edificando en el área del nacimiento unas instalaciones (piscina, vestuarios, habitaciones de reposo) acondicionadas para tales fines.

• PUNTO POZO MARQUÉS

Facies hidroquímica: sulfatada cálcica

Acuífero/s: Cretácico (influencia de los niveles Terciarios).

Sector: suroccidental.

Elementos destacados: sulfatos y conductividad.

NOMBRE	FECHA	Na	K	Са	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
Pozo del Marqués	15/10/2014	31	2	450	82	49	1180	173	0	39	0	0	0	21,3	0,5	3050	7,68
Concentracio	Concentraciones en mg/l : Conductividad eléctrica en uS/cm: nH en unidades de nH																

Tabla 27. Resultados analíticos del punto de observación pozo Marqués (campaña de octubre de 2014)

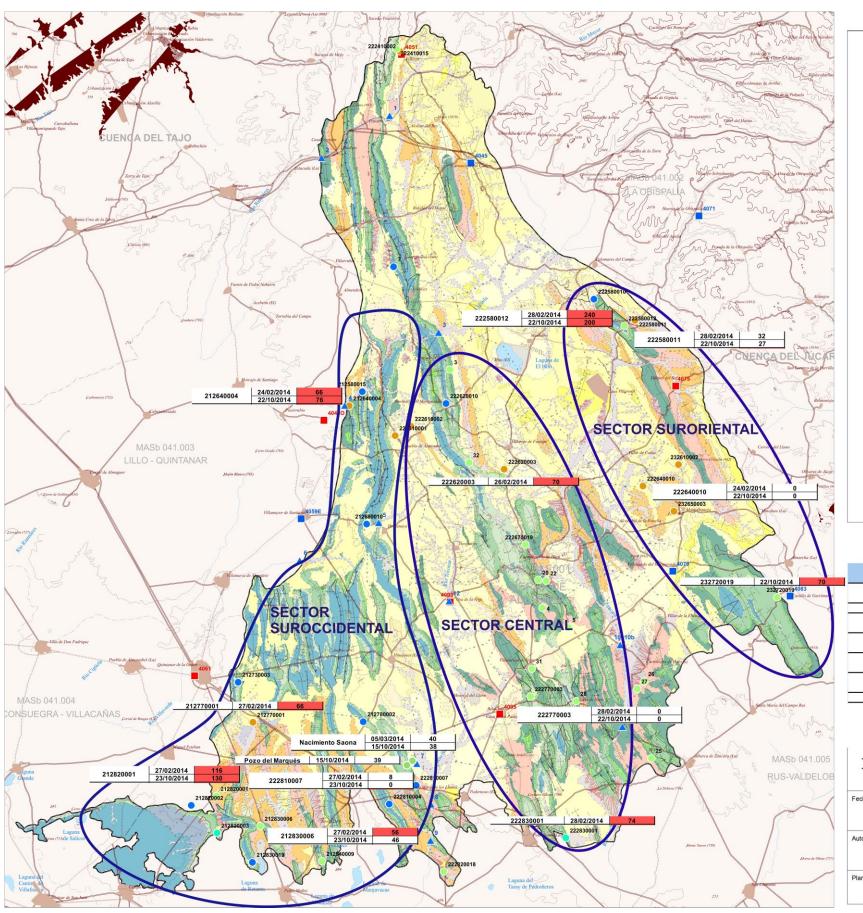
Este sondeo se encuentra a escasos 600 metros al sur del manantial de Saona y capta las mismas aguas que drena dicha surgencia, tal y como confirma el análisis químico expuesto, en el que se comprueba que se trata de aguas con un alto contenido en sulfatos y valores elevados en conductividad eléctrica.

9.2. ESTUDIO ZONAL DE LAS MUESTRAS

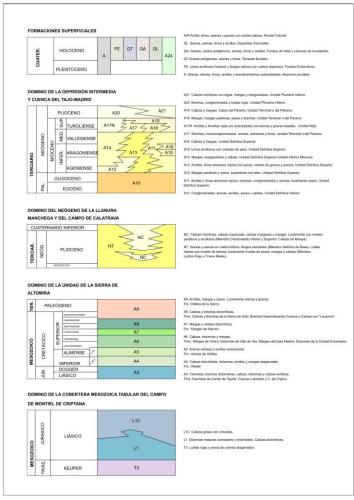
Se representan a continuación en tres mapas los contenidos elementales en nitratos, sulfatos y conductividad eléctrica.

• ZONIFICACIÓN DE LOS NITRATOS

En la figura 40 se han representado las concentraciones en nitratos de las muestras tomadas en febrero y octubre de 2014.


Un alto contenido en nitratos es consecuencia de una afección antrópica por actividades agrícolas y el uso de abonos o fertilizantes, que tras ser aplicados sobre el terreno van percolando hasta alcanzar las aguas subterráneas. Tal como se puede comprobar, la escasez de muestras impide asociar un mayor o menor contenido en nitratos a sectores concretos o a un determinado nivel acuífero (Jurásico, Cretácico o Terciario).

La mayor concentración en este elemento se registra en la captación 222580012 de Zafra de Záncara, con 240 mg/L de NO₃ en febrero y 200 mg/L de NO₃ en octubre. Se trata de un pozo de escasa profundidad situado en una zona agrícola.


El sondeo 212820001 de El Toboso también presenta concentraciones elevadas en NO₃ con 116 y 130 mg/L en febrero y octubre de 2014 respectivamente.

El resto de captaciones muestran concentraciones por debajo de los 100 mg/L, incluso seis de ellas presentan valores inferiores a los 50 mg/L establecidos como límite legal para las aguas de boca por la Reglamentación vigente.

Destaca la zona comprendida entre Mota del Cuervo y El Pedernoso, donde las aguas del manantial de Saona y de las captaciones pozo Marqués y 222810007 muestran bajas concentraciones en este elemento, probablemente por ser un área de mayor flujo subterráneo aunque, como se verá más adelante, sí presenta altos contenidos en otras sales, precisamente por este mismo hecho, que facilita el lavado de los niveles yesíferos de las formaciones presentes en este sector.

LEYENDA GEOLÓGICA

Nº IGME	FECHA	NO3 (mg/L)
212640004	24/02/2014	66
212640004	22/10/2014	76
212770001	27/02/2014	66
04000004	27/02/2014	116
212820001	23/10/2014	130
040000000	27/02/2014	56
212830006	23/10/2014	46
000500011	28/02/2014	32
222580011	22/10/2014	27
000500040	28/02/2014	240
222580012	22/10/2014	200
222620003	26/02/2014	70

Nº IGME	FECHA	NO3 (mg/L)
000010010	24/02/2014	0
222640010	22/10/2014	0
000770000	28/02/2014	0
222770003	22/10/2014	0
000040007	27/02/2014	8
222810007	23/10/2014	0
222830001	28/02/2014	74
232720019	22/10/2014	70
Pozo del Marqués	15/10/2014	39
Nacimiento Saona	05/03/2014	40
Nacimiento Saona	15/10/2014	38

Fecha: Mayo de 2015	Apoyo técnico en materia de infraestructura hidrogeológica a la Comunidad de Usuarios del Acuifero 19 "Sierra de Altomira"
Autores: J.A. Domínguez L. Vega	Contenido en nitratos
Plano: Figura 40	de las aguas de la MASb Sierra de Altomira (campañas de febrero y octubre de 2014)

• ZONIFICACIÓN DE LOS SULFATOS

En la figura 41 se han representado las concentraciones en sulfatos de las muestras de febrero y octubre de 2014 tomadas en los puntos de la red de observación de la MASb Sierra de Altomira.

En este caso, los altos contenidos en sulfatos son consecuencia de que las aguas analizadas han estado en contacto con niveles de yesos.

Existen varias formaciones en la región que incluyen este tipo de materiales, sobre todo las formaciones del tránsito Cretácico-Terciario y algunas del propio Terciario. La descripción que a continuación se realiza de las mismas se basa, en parte, en un documento inédito realizado por D. Julio César López Gutiérrez.

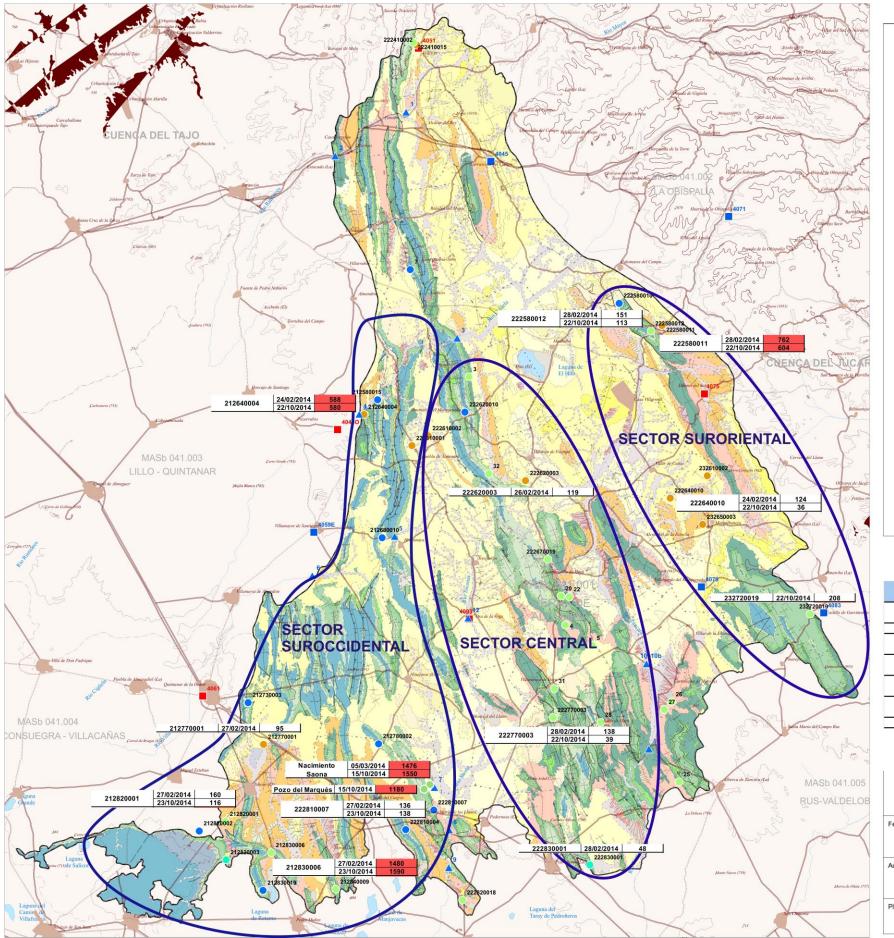
Así, por ejemplo, la **Formación Margas, arcillas y yesos de Villalba de la Sierra**, del Campaniense-Eoceno, está compuesta por calizas, margas y yesos, y aunque se considera que hidrogeológicamente actúa como un acuitardo (nivel semipermeable) o acuicludo (nivel impermeable), presenta pequeños niveles acuíferos asociados a yesos karstificados o a los paquetes de calizas.

Entre las formaciones terciarias, la **Unidad Paleógeno-Neógena-Subunidad inferior** incluye desde arenas y arcillas con intercalaciones de conglomerados, más frecuentes al este de la MASb, a arcillas yesíferas y horizontes de yesos masivos en la depresión de El Hito y arcillas, calizas y margas con calizas a techo en el oeste. El espesor del conjunto es de 200 m en el extremo oriental y 500 m en Villarejo de Fuentes.

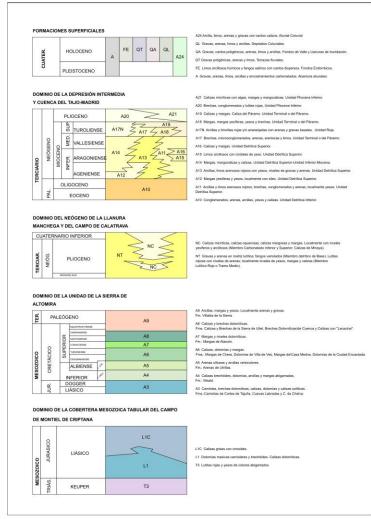
También la **Unidad Paleógeno-Neógena-Subunidad superior** puede ocasionar elevados contenidos en sulfatos en las aguas subterráneas ya que está constituida en la Depresión de El Hito, por unos 200-300 m de arcillas rojas y areniscas, con intercalaciones de arcillas yesíferas, areniscas y conglomerados. Hacia el SE estas facies se tornan más evaporíticas, con niveles de yesos masivos de hasta 10 m de espesor.

Finalmente, los depósitos de la denominada **Unidad Neógena** desarrollados junto a los principales relieves, están formados por arcillas rojas y areniscas con horizontes de conglomerados y brechas, sin embargo, en áreas más alejadas de estas elevaciones se tornan más arcillosos y evaporíticos con presencia de yesos y arcillas yesíferas. Culmina esta serie con niveles de escasos metros de calizas y margas.

Dicho esto, no es de extrañar que el manantial de Saona y el Pozo Marqués sean los puntos con una mayor concentración de sulfatos. Concretamente, la surgencia de Saona presentó 1.476 mg/L de SO₄ en febrero de 2014 y 1.550 mg/L de SO₄ en octubre del mismo año, mientras que el pozo Marqués (analizado solo en octubre) registra una concentración en sulfatos de 1.180 mg/L. Estos puntos de observación se ven influenciados en su hidroquímica por la presencia de los niveles yesíferos de la **Unidad Neógena** (Mioceno).

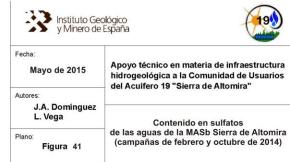


También es elevado el contenido en sulfatos de las aguas de la captación 212830006, situada en término de El Toboso y cuyas aguas lavan los niveles de yesos de los materiales del tránsito Terciario-Cretácico (Formación Margas, arcillas y yesos de Villalba de la Sierra).


Las muestras tomadas en el pozo 222580011 (Zafra de Záncara) presentan contenidos en sulfatos menores a los de las captaciones anteriores (762 mg/L SO₄ y 604 mg/L SO₄ en febrero y octubre de 2014, respectivamente), sin embargo, reflejan también influencia de materiales yesíferos. Probablemente lleguen a esta captación aguas subsuperficiales que lavan los niveles de areniscas, arcillas y limos con margas y yesos del Oligoceno superior (**Unidad Paleógeno-Neógena-Subunidad superior**).

También excede sensiblemente el límite fijado por la legislación para aguas de consumo público para los sulfatos el pozo 212640004, ubicado en término municipal de Los Almendros. En este caso las aguas proceden de los niveles de areniscas grises y amarillentas de Eoceno superior — Oligoceno inferior, pero probablemente están influenciadas por algún aporte de la **Unidad Paleógeno-Neógena-Subunidad inferior** que incluye tramos de arcillas yesíferas y yesos masivos.

El resto de muestras analizadas reflejan contenidos en sulfatos por debajo del límite legal para aguas de consumo humano.



LEYENDA GEOLÓGICA

N° IGME	FECHA	SO4 (mg/L)
040040004	24/02/2014	588
212640004	22/10/2014	580
212770001	27/02/2014	95
04000004	27/02/2014	160
212820001	23/10/2014	116
242020000	27/02/2014	1480
212830006	23/10/2014	1590
222500044	28/02/2014	762
222580011	22/10/2014	604
000500040	28/02/2014	151
222580012	22/10/2014	113
222620003	26/02/2014	119

	N° IGME	FECHA	SO4 (mg/L)		
	222640010	24/02/2014	124		
	222640010	22/10/2014	36		
	222770002	28/02/2014	138		
	222770003	22/10/2014	39		
	222810007	27/02/2014			
	222010007	23/10/2014	138		
	222830001	28/02/2014	48		
	232720019	22/10/2014	208		
P	ozo del Marqués	15/10/2014	1180		
	Nacimiento	05/03/2014	1476		
	Saona	15/10/2014	1550		

• ZONIFICACIÓN DE LA CONDUCTIVIDAD ELÉCTRICA

La conductividad eléctrica es la capacidad que tiene un cuerpo o solución para permitir ser atravesado por la corriente eléctrica. Se mide en siemens/centímetro (S/cm), microsiemens/centímetro (µS/cm) o mho⁻¹ * cm⁻¹.

La conductividad eléctrica aumenta, hasta un determinado límite, conforme va aumentando la concentración iónica, es decir, a más sales disueltas en un fluido (agua) más conductividad eléctrica y, por tanto, más facilidad para que una corriente eléctrica atraviese ese líquido.

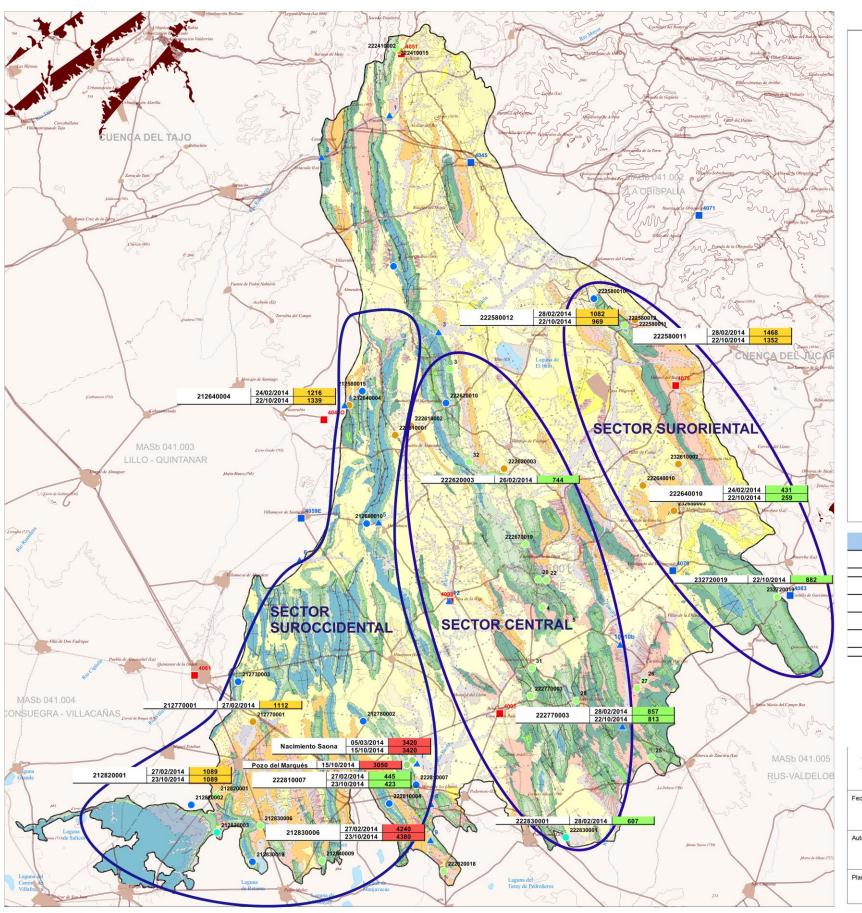
También está muy influenciada por la temperatura por lo que debe indicarse la temperatura a la que se toma la muestra.

Como parámetros orientativos o guía se indica que a 18°C las aguas dulces tienen valores de conductividad eléctrica entre 100 y 2.000 μ S/cm, mientras que el agua del mar ronda los 45.000 μ S/cm.

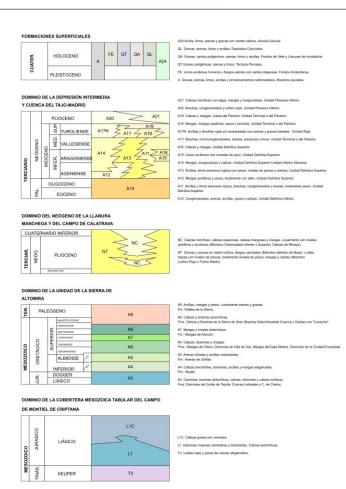
Dicho lo anterior es comprensible que las muestras en las que hay una mayor concentración en sales, sobre todo sulfatos, sean las que presenten también valores más elevados de conductividad eléctrica.

El límite que establece la Reglamentación Técnico Sanitaria para aguas de consumo público se fija en 2.500 $\mu S/cm$ y dentro de las muestras analizadas en la MASb Sierra de Altomira únicamente tres puntos superan este valor, las aguas de la captación 212830006 con 4.240 $\mu S/cm$ en febrero de 2014 y 4.380 $\mu S/cm$ en octubre; las aguas del nacimiento del río Saona con 3.420 $\mu S/cm$ tanto en febrero como en octubre de 2014 y las del pozo Marqués, con un registro de conductividad eléctrica medido en octubre de 2014 de 3.050 $\mu S/cm$.

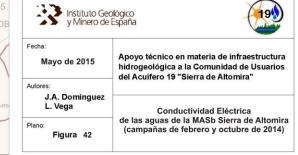
Estas tres muestras (representadas en rojo en la figura 42), como ya se ha dicho en el apartado anterior, son también las que presentan mayores concentraciones en sulfatos.


El resto de muestras se pueden agrupar en dos bloques, las que tienen valores de conductividad eléctrica comprendidos entre 900 y 1.500 μ S/cm (representados en naranja en el plano adjunto) y las aguas con valores inferiores a 900 μ S/cm (representadas en color verde).

Destacan por su baja conductividad las muestras 22810007 (Santa María de Los Llanos) y 222640010 (Montalbanejo) con conductividades eléctricas entre 259 $\mu S/cm$ y 445 $\mu S/cm$.


Zonalmente, pese a la escasez de muestras analizadas y a que corresponden a aguas de distintos niveles permeables desconectados entre sí, se puede indicar que las aguas con conductividades eléctricas menores se encuentran en la mitad oriental de la MASb,

mientras que hacia el suroeste las concentraciones elementales son mayores y consecuentemente los registros de conductividad eléctrica medidos.



LEYENDA GEOLÓGICA

N° IGME	FECHA	Conductivid ad (µS/cm)
212640004	24/02/2014	1216
212640004	22/10/2014	1339
212770001	27/02/2014	1112
242020004	27/02/2014	1089
212820001	23/10/2014	1089
040000000	27/02/2014	4240
212830006	23/10/2014	4380
000500044	28/02/2014	1468
222580011	22/10/2014	1352
000500040	28/02/2014	1082
222580012	22/10/2014	969
222620003	26/02/2014	744

НА	Conductivid ad (µS/cm)	N° IGME	FECHA	Conductivid ad (µS/cm)	
2014	1216	222640010	24/02/2014	431	
/2014	1339	222640010	22/10/2014	259	
/2014	1112	222770003	28/02/2014	857	
2014	1089	222770003	22/10/2014	813	
/2014	1089	000040007	27/02/2014	445	
/2014	4240	222810007	23/10/2014	423	
2014	4380	222830001	28/02/2014	607	
2014	1468	232720019	22/10/2014	882	
/2014	1352	Pozo del Marqués	15/10/2014	3050	
/2014	1082		05/03/2014	3420	
2014	969	Nacimiento Saona	15/10/2014	3420	
/2014	744				

10. CALIDAD DE LAS AGUAS DE ABASTECIMIENTO EN LA MASB SIERRA DE ALTOMIRA

Gracias a las gestiones realizadas por el personal administrativo y en particular por el presidente de la Comunidad de Regantes Sierra de Altomira, D. Rafael Rodrigo Medina, se ha podido recabar información referente a la calidad de las aguas de abastecimiento de gran parte de los municipio de la MASb Sierra de Altomira y alrededores.

Esta información es la base para la elaboración del presente apartado en el que se analiza la calidad general de las aguas de abastecimiento de la MASb, se catalogan, por municipios, las aguas en función de su aptitud para el consumo humano y se determina qué elementos son los principales generadores de contaminación.

Se han recopilado análisis químicos de las aguas de abastecimiento de un total de 66 municipios, de los cuales 55 se sitúan total o parcialmente dentro de la MASB Sierra de Altomira. Únicamente ocho municipios pertenecientes a esta MASb han quedado sin información analítica.

Toda esta documentación se adjunta en el ANEXO IV "Análisis químicos de las aguas de abastecimiento".

La información ha sido tratada de forma global para el conjunto de la MASb e individualizada por núcleos urbanos (municipios). Así se ha elaborado un apartado de información general en el que se trata de analizar la calidad de las aguas de abastecimiento dentro de la MASb y una serie de apartados en los que se tratan los resultados en función del elemento (nitratos, sulfatos, contenido bacteriológico y conductividad eléctrica) que modifica la aptitud de las aguas para su consumo público.

10.1. CALIDAD GENERAL DE LAS AGUAS DE ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA

Se han catalogado los municipios en cuatro grupos en función de la calidad de sus aguas, existiendo un quinto grupo de municipios de los que no se cuenta con información analítica de sus aguas de abastecimiento.

En la tabla 28 se resumen los principales resultados de este análisis.

Se han establecido así dos categorías básicas, la constituida por las aguas consideradas APTAS para el consumo humano, con tres subdivisiones, y un grupo que incluye los municipios con aguas de abastecimiento calificadas como NO APTAS.

MUNICIPIO	ORIGEN DEL AGUA	CALIDAD DEL AGUA	ELEMENTO/S DESTACADO
ALCÁZAR DE SAN JUAN	?	АРТА	
ALCÁZAR DEL REY	Subterráneo	АРТА	
ALCONCHEL DE LA ESTRELLA	Subterráneo	NO APTA	Contaminación microbiológica
ALMENDROS ALMONACID DEL MARQUESADO	Superficial Subterráneo	EXCEPCIONABLE NO APTA	Sulfatos Nitratos
ATALAYA DE CAÑAVATE	Subterráneo	APTA *	Nitratos
BARAJAS DE MELO	Subterráneo	EXCEPCIONABLE	Sulfatos
BELMONTE	Subterráneo	АРТА	
CAMPO DE CRIPTANA		SIN DATOS	
CAMPOS DEL PARAISO		SIN DATOS	
CAÑADAJUNCOSA	Subterráneo	NO APTA	Nitratos
CARRASCOSA DE HARO	Subterráneo	АРТА	- 16
CARRASCOSA DEL CAMPO	Subterráneo	EXCEPCIONABLE	Sulfatos
CASAS DE BENITEZ CASAS DE FERNANDO ALONSO	Subterráneo ?	NO APTA NO APTA	Contaminación microbiológica Nitratos
CASAS DE GUIJARRO	?	APTA	Nitiatos
CASAS DE HARO	?	APTA	
CASTILLO DE GARCIMUÑOZ	Subterráneo	APTA *	
CERVERA DEL LLANO	Subterráneo	NO APTA	Sulfatos y conductividad eléctrica
EL CAÑAVATE	Subterráneo	APTA *	
EL HITO	Subterráneo	APTA	
EL PEDERNOSO	Subterráneo	EXCEPCIONABLE	Sulfatos
EL TOBOSO	Subterráneo	NO APTA	Nitratos
FUENTELESPINO DE HARO HONRUBIA	Subterráneo Subterráneo	APTA * APTA	
HONTANAYA	Subterraneo	SIN DATOS	
HUELVES	Subterráneo	EXCEPCIONABLE	Sulfatos
HUETE	Subterráneo	EXCEPCIONABLE	Sulfatos
LA ALBERCA DE ZÁNCARA	?	NO APTA	Nitratos
LA ALMARCHA		SIN DATOS	
LA HINOJOSA	Subterráneo	APTA *	
LAS MESAS		SIN DATOS	
LAS PEDROÑERAS	Subterráneo	NO APTA	Nitratos
LOS HINOJOSOS MIGUEL ESTEBAN	Subterráneo	EXCEPCIONABLE SIN DATOS	Sulfatos
MONREAL DEL LLANO	Subterráneo	EXCEPCIONABLE	Sulfatos
MONTALBANEJO	Subterráneo	APTA *	Sunates
MONTALBO	Subterráneo	EXCEPCIONABLE	Sulfatos
MOTA DEL CUERVO	Subterráneo	EXCEPCIONABLE	Sulfatos
OSA DE LA VEGA	Subterráneo	EXCEPCIONABLE	Sulfatos
PALOMARES DEL CAMPO	Subterráneo	EXCEPCIONABLE	Sulfatos
PAREDES	?	EXCEPCIONABLE	Sulfatos
PEDRO MUÑOZ PINAREJO	Subterráneo Subterráneo	EXCEPCIONABLE APTA	Sulfatos / Contaminación microbiológica
POZOAMARGO	Subterráneo	NO APTA	Nitratos
POZORRUBIO	Subterráneo	NO APTA	Contaminación microbiológica
PUEBLA DE ALMENARA	Subterráneo	NO APTA	Contaminación microbiológica
QUINTANAR DE LA ORDEN		SIN DATOS	
RADA DE HARO	Subterráneo	EXCEPCIONABLE	Sulfatos / Exceso de cloro libre residual
ROZALEN DEL MONTE	?	EXCEPCIONABLE	Sulfatos / Microbiológica
SACEDA-TRASIERRA	Subterráneo	APTA	- 101 111 111
SAELICES	Subterráneo ?	EXCEPCIONABLE	Exceso de Cloro libre residual
SAN CLEMENTE SANTA MARÍA DE LOS LLANOS	r Subterráneo	NO APTA EXCEPCIONABLE	Nitratos Sulfatos
SANTA MARÍA DE LOS LLANOS SANTA MARÍA DEL CAMPO RUS	Subterraneo ?	NO APTA	Nitratos
SISANTE	Subterráneo	APTA	
TARANCÓN	Superficial	EXCEPCIONABLE	Sulfatos
TEBAR	Subterráneo	NO APTA	Contaminación microbiológica
TORREJONCILLO DEL REY	Subterráneo	APTA	
TORRUBIA DEL CASTILLO	Subterráneo	NO APTA	Nitratos
TRESJUNCOS	Subterráneo	APTA	
TRIBALDOS	Superficial	EXCEPCIONABLE	Sulfatos
UCLES VELLISCA	Subterráneo Superficial	APTA APTA	
VILLAESCUSA DE HARO	Subterráneo	APTA	
VILLALGORDO DEL MARQUESADO	Subterráneo	EXCEPCIONABLE	Sulfatos
VILLAMAYOR DE SANTIAGO	Subterráneo	APTA	Junu103
VILLANUEVA DE ALCARDETE		SIN DATOS	
VILLAR DE CAÑAS	Subterráneo	EXCEPCIONABLE	Sulfatos
VILLAR DE LA ENCINA	?	APTA	
VILLAREJO DE FUENTES	Subterráneo	APTA *	
VILLARES DEL SAZ	Subterráneo	EXCEPCIONABLE	Sulfatos
	Superficial	EXCEPCIONABLE	Sulfatos
VILLARRUBIO	·		
VILLARRUBIO ZAFRA DE ZÁNCARA	Subterráneo	EXCEPCIONABLE A PARA EL CONSUMO	Sulfatos

Tabla 28. Calificación de las aguas de abastecimiento humanos de los municipios del área de estudio según el Reglamento Técnico Sanitario (Real Decreto 140/2003, de 7 de febrero).

Esta calificación se basa en lo indicado en el apartado 4 del Artículo 17. Control de la calidad del agua de consumo humano, del Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano, en donde se indica que:

En toda muestra de agua de consumo humano para el autocontrol, vigilancia sanitaria y control en grifo del consumidor, el agua se podrá calificar como:

- a) "Apta para el consumo": cuando no contenga ningún tipo de microorganismo, parásito o sustancia en una cantidad o concentración que pueda suponer un peligro para la salud humana; y cumpla con los valores paramétricos especificados en las partes A, B y D del anexo I o con los valores paramétricos excepcionados por la autoridad sanitaria y sin perjuicio de lo establecido en el artículo 27.7, determinados en el análisis.
- b) "No apta para el consumo": cuando no cumple con los requisitos del párrafo a). Si un agua "no apta para el consumo" alcanza niveles de uno o varios parámetros cuantificados que la autoridad sanitaria considera que han producido o pueden producir efectos adversos sobre la salud de la población, se calificará como agua "no apta para el consumo y con riesgos para la salud".

Teniendo en cuanta lo anterior, dentro del primer grupo de municipios, los que se abastecen de aguas APTAS para el consumo, se pueden diferenciar tres subgrupos:

- 1.- AGUAS APTAS "sensu stricto" (identificadas en color verde en las tablas y planos adjuntos): presentan todos sus elementos dentro de los límites fijados por la Reglamentación Técnica Sanitaria para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero). El total de municipios abastecidos con aguas así calificadas es de 18, lo que representa un 24 % del total de municipios del área.
- 2.- AGUAS APTAS con concentración inadecuada de desinfectante residual (identificadas en amarillo): estas aguas presentan todos sus elementos por debajo de los límites máximos de potabilidad establecidos por la legislación, pero contienen un valor inadecuado de cloro libre residual, que debe estar comprendido entre 0,2 y 1 mg/L.

Entre las recomendaciones indicadas por los Organismos de control sanitario se incluye "Mantener los niveles de cloro libre residual entre el 0,2 y 1 mg/L en toda la red de distribución".

Los municipios con aguas con esta calificación son 7 (9% del total).

3.- AGUAS APTAS con alteración de algún parámetro de la parte C del Anexo I del Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano (identificadas en color naranja). Se trata de aguas en las que uno o varios de los elementos incluidos en el mencionado apartado C (figura 43) exceden los límites de potabilidad establecidos por la reglamentación pero que son excepcionados por la Autoridad Sanitaria, en conformidad con el apartado 7 del Artículo 21. Incumplimientos y medidas correctoras preventivas (Real Decreto 140/2003, de 7 de febrero) que dice: *En el caso de incumplimiento de parámetros del anexo I, parte C, la autoridad sanitaria*

valorará la calificación del agua como "apta o no apta para el consumo" en función del riesgo para la salud.

C. Parámetros indicadores

Parámetro	Valor parai	Notas	
31. Bacterias coliformes	0 UFC	En 100 ml	
32. Recuento de colonias a 22 ºC			
A la salida de ETAP	100 UFC	En 1 ml	
En red de distribución	Sin cambios anómalos		
33. Aluminio	200	µg/l	
34. Amonio	0,50	mg/l	
35. Carbono orgánico total	Sin cambios anómalos	mg/l	1
36. Cloro combinado residual	2,0	mg/l	2, 3 y 4
37. Cloro libre residual	1,0	mg/l	2 y 3
38. Cloruro	250	mg/l	
39. Color	15	mg/l Pt/Co	
40. Conductividad	2.500	µS/cm ⁻¹ a 20 °C	5
41. Hierro	200	µg/I	
42. Manganeso	50	µg/I	
43. Olor	3 a 25 °C	Índice de dilución	
44. Oxidabilidad	5,0	mg O ₂ /I	1
45. pH:			5 y 6
Valor paramétrico mínimo	6,5	Unidades de pH	
Valor paramétrico máximo	9,5	Unidades de pH	
46. Sabor	3 a 25 °C	Índice de dilución	
47. Sodio	200	mg/l	
48. Sulfato	250	mg/l	
49. Turbidez: A la salida de ETAP y/o depósito	1	UNF	
En red de distribución	5	UNF	

Notas:

- (1) En abastecimientos mayores de 10.000 m³ de agua distribuida por día se determinará carbono orgánico total, en el resto de los casos, oxidabilidad.
- (2) Los valores paramétricos se refieren a niveles en red de distribución.
- La determinación de estos parámetros se podrá realizar también «in situ».
- En el caso de la industria alimentaria, este parámetro no se contemplará en el agua de proceso.
- (3) Se determinará cuando se utilice el cloro o sus derivados en el tratamiento de potabilización.
- Si se utiliza el dióxido de cloro se determinarán cloritos a la salida de la ETAP.
- (4) Se determinará cuando se utilice la cloraminación como método de desinfección.
- (5) El agua en ningún momento podrá ser ni agresiva ni incrustante.
- El resultado de calcular el Índice de Langelier debería estar comprendido entre +/- 0,5.
- (6) Para la industria alimentaria, el valor mínimo podrá reducirse a 4,5 unidades de pH.

Figura 43. Parte C del anexo I del Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano.

En la zona de estudio, el elemento que mayoritariamente excede el límite de potabilidad es el sulfato (concentración límite = 250 mg/L).

Las aguas de abastecimiento quedan enriquecidas en este elemento de forma natural, al estar presente en varias de las formaciones geológicas de la zona en forma de yeso, de las que se extraen recursos hídricos, debiendo ser aguas excepcionadas por las autoridades sanitarias.

De forma puntual (Saelices y Rada de Haro) se excepciona un contenido elevado en cloro libre residual o la presencia de bacterias coliformes (Rozalén del Monte y Pedro Muñoz).

En todos estos casos las recomendaciones (de rápida aplicación) indicadas por la entidad sanitaria incluyen las siguientes medidas:

- Buscar fuentes alternativas que aporten un agua con una calidad aceptable para su incorporación al sistema de abastecimiento de agua de consumo.
- Mezclar con agua procedente de otra captación de mejor calidad en origen.
- Optimizar el proceso de tratamiento en planta.
- Introducir un sistema de tratamiento adecuado que garantice la potabilidad del agua.
- Desinfectar antes de su uso para consumo humano.
- Mantener los niveles de cloro libre residual entre 0,2 y 1 mg/L a lo largo de toda la red de distribución.

Los municipios con aguas de consumo humano en las que algún elemento excede los límites legales pero es excepcionado por las entidades sanitarias son 25 (34 % del total).

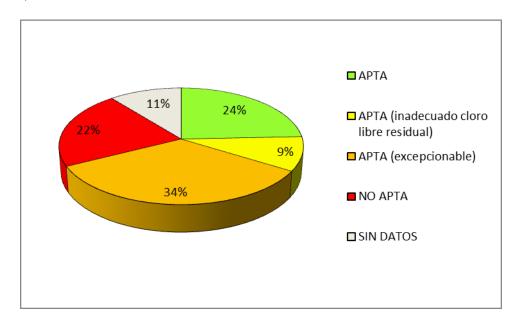


Figura 44. Aguas de abastecimiento de la zona de estudio (calificación porcentual).

Finalmente, el grupo de municipios abastecidos con "AGUAS NO APTAS" es de 16, lo que representa un 22 % del total de municipios analizados (incluidos los 8 de los que no se tienen datos analíticos, pero que total o parcialmente se encuentran en la MASb).

Estos municipios se abastecen de aguas que, en un 63 % de los casos, presentan altos contenidos en nitratos, mientras que en el 31 % de las muestras el factor contaminante es la presencia de elementos patógenos (Clostridium perfringens; Enterococos intestinales o Escherichia coli).

Solo en una de las muestras, la correspondiente a Cervera del Llano, que representa el 6 % del total de las aguas NO APTAS, esta calificación es consecuencia de un contenido tan elevado en sulfatos (1.831 mg/L SO4) que no es posible su excepcionabilidad y hace incluso sobrepasar el límite permitido en conductividad eléctrica con más de 2.500 µs/cm.

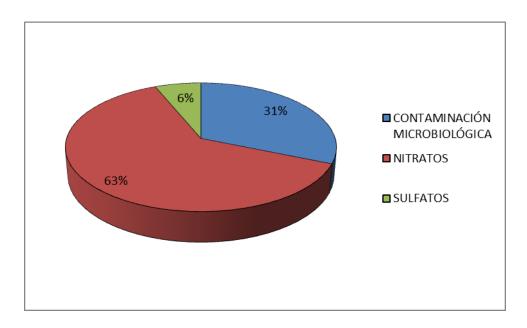
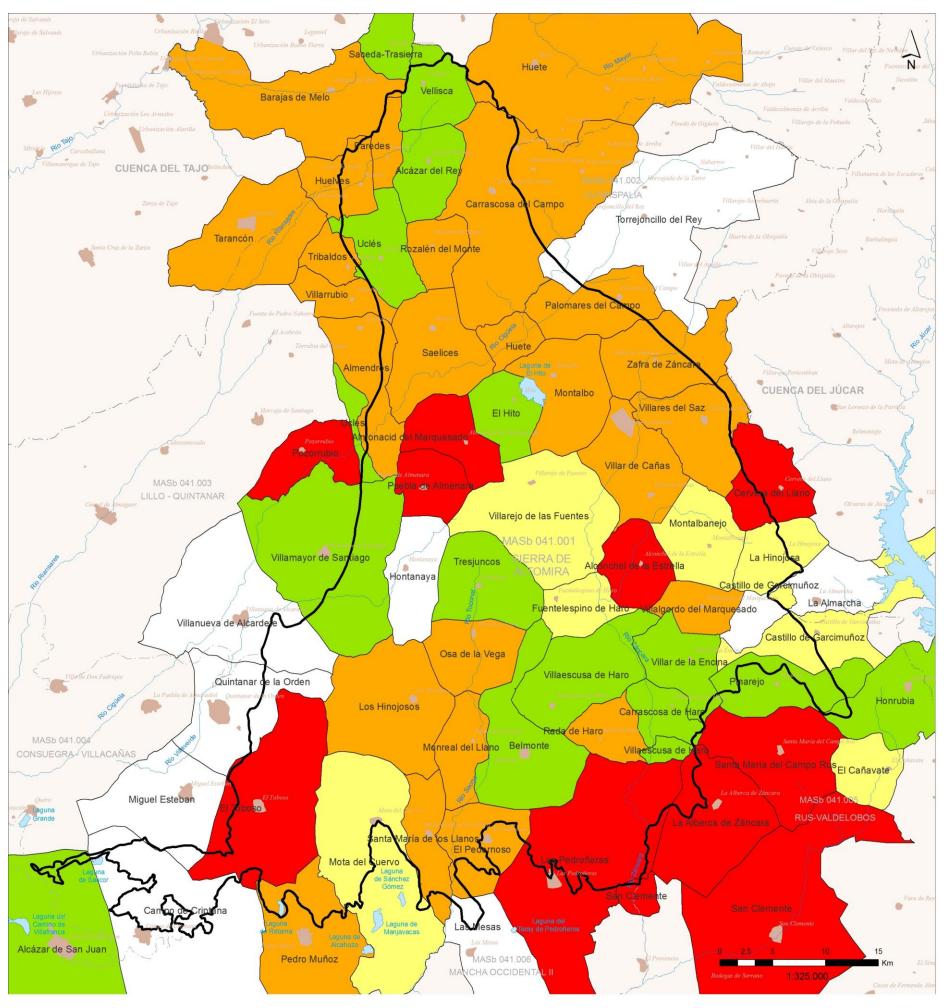


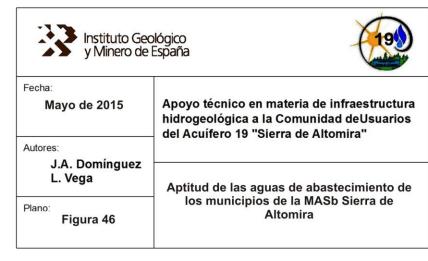
Figura 45. Elementos contaminantes de las aguas de abastecimiento calificadas como NO APTAS en la zona de estudio.

En el caso de aguas NO APTAS, las recomendaciones de las entidades sanitarias son idénticas a las ya expuestas para el caso de aguas excepcionables.

• ZONIFICACIÓN DE LAS AGUAS DE ABASTECIMIENTO HUMANO


Si observamos la figura 46 se puede dividir, a groso modo, la MASb Sierra de Altomira, de norte a sur, en varias zonas.

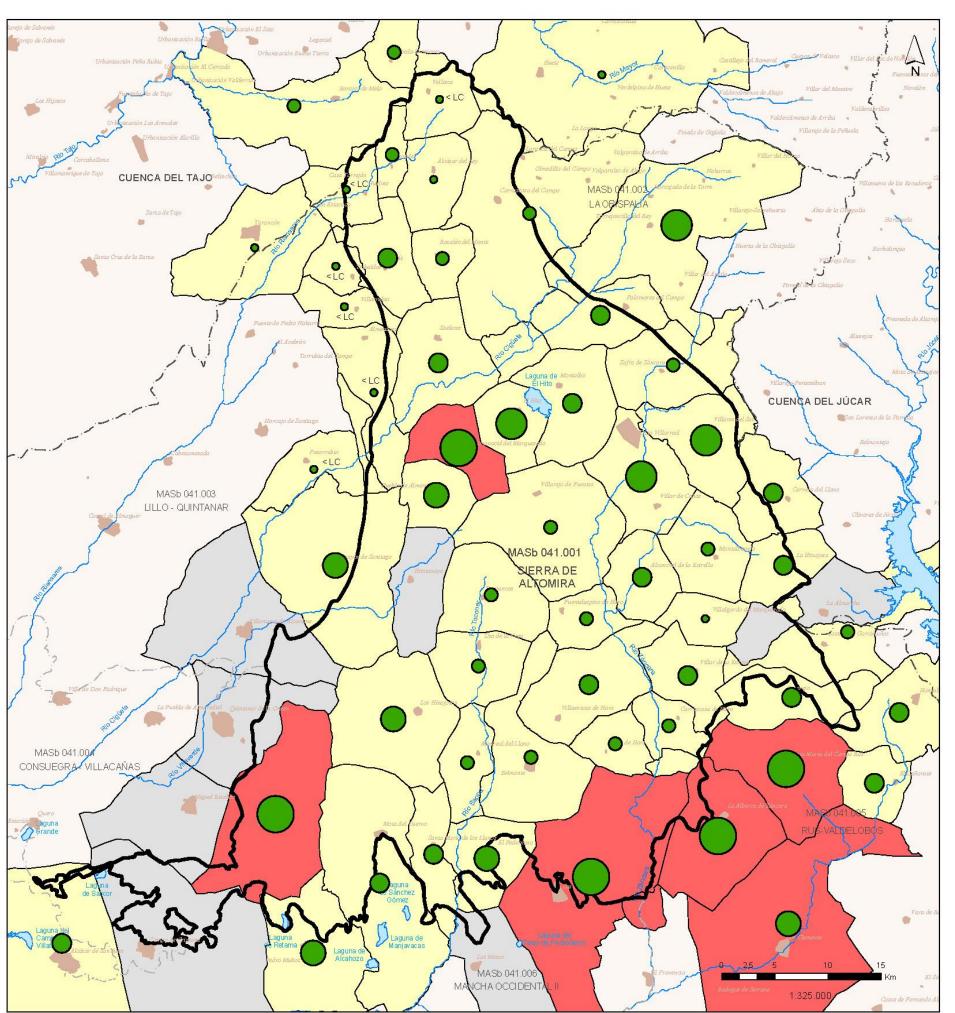
- En el tercio septentrional, por encima de la laguna de El Hito, todos los municipios presentan aguas APTAS para el consumo, aunque la presencia de sulfatos por encima de los 250 mg/L marcados como límite de potabilidad por la Reglamentación Técnico Sanitaria es generalizada. Si bien se trata de un elemento excepcionado, en algunos casos el contenido en este ión supera los 800 mg/L (Carrascosa del Campo: 813 mg/L SO₄; Palomares del Campo: 820 mg/L SO₄ y Montalbo: 895 mg/L SO₄).
- Al sur de la Laguna de El Hito y hasta la divisoria imaginaria que se situaría a la altura de Alconchel de la Estrella, se ubican una serie de municipios con


aguas de peor calidad en donde la presencia de elementos patógenos (Pozorrubio; Puebla de Almenara y Alconchel de la Estrella), exceso en nitratos (Almonacid del Marquesado) o una alta concentración en sulfatos (Cervera del Llano) hacen a las mismas NO APTAS para el abastecimiento humano.

- Los municipios ubicados en la mitad meridional de la MASb Sierra de Altomira se abastecen con aguas en general APTAS para el consumo humano. En algunos casos el contenido en sulfatos es elevado, destacando los municipios de El Pedernoso con 874 mg/L de SO4 y Rada de Haro con 975 mg/L de SO4, en ambos casos excepcionados por las autoridades sanitarias.
- En el extremo sur de la MASb y fuera de los límites de la misma es donde vuelven a aparecer problemas de potabilidad generalizados. En esta zona, el elemento contaminante principal son los nitratos que superan los 50 mg/L en El Toboso, Las Pedroñeras, La Alberca de Záncara, Santamaría del Campo Rus o, ya más al sur, en San Clemente. El hecho de que nos encontremos en una zona dedicada exclusivamente a la agricultura es determinante en este caso.

CALIDAD DE LAS AGUAS DE ABASTECIMIENTO DE LOS MUNICIPIOS DE LA MASЬ SIERRA DE ALTOMIRA

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	CI libre residual "in situ" (mg/l)	SO4 (mg/l)	NO3 (mg/l)	Conductividad 20° (μS/cm)	Clostridium perfringens (ufc/100 ml)	Bacterias coliformes (ufc/100 ml)	Enterococos intestinales (ufc/100 ml)	Escherici coli (ufc/100 r
ALCÁZAR DE SAN JUAN	?	12/04/2011	0,32	66	24,7	629	0	0	0	0
ALCÁZAR DEL REY	Subterráneo	04/08/2014	0,5		6	500			1.0	_
ALCONCHEL DE LA ESTRELLA	Subterráneo	16/09/2014	0	646	22	1.390	< 1	< 4	< 4	< 1
ALMENDROS	Superficial	21/07/2014	0	286	< LC	763	< 1	<1	< 1	< 1
ALMONACID DEL MARQUESADO	Subterráneo	09/09/2014	0,6		57	650				
BARAJAS DE MELO	Subterráneo	21/07/2014	0,6	702	19	1.535				
BELMONTE	Subterráneo	09/09/2014	0,3	55	19	693	<1			
CARRASCOSA DE HARO	Subterráneo	09/09/2014	0,3	040	20	653	<1			_
CARRASCOSA DEL CAMPO CASTILLO DE GARCIMUÑOZ	Subterráneo	29/07/2013 02/09/2014	0	813	11 12	1.320 593	0 < 1	0 <1	0 < 1	0 < 1
CERVERA DEL LLANO	Subterráneo Subterráneo	16/09/2014	0,6	1.831	24	2.570	1	``	<u> </u>	- `1
EL CAÑAVATE	Subterráneo	02/09/2014	0,1	149	27	786	< 1			
EL HITO	Subterráneo	09/09/2014	0,3	140	44	610	<1			
EL PEDERNOSO	Subterráneo	01/09/2014	1,76	874	34	1.745				
EL TOBOSO	Subterráneo	08/10/2013	0,3	443	52.9	1.220	0	93	0	
FUENTELESPINO DE HARO	Subterráneo	09/09/2014	0,1		17	529	< 1			
HONRUBIA	Subterráneo	02/09/2014	0,6		28	570				Ê
HUELVES	Subterráneo	25/11/2013	0	584	< LC	1.335	0	0	0	0
HUETE	Subterráneo	04/08/2014	0,5	433	9	1.084				
LA ALBERCA DE ZÁNCARA	?	18/08/2014	0,13		65	713	0			
LA HINOJOSA	Subterráneo	16/09/2014	0		27	676	< 1	<1	< 1	< 1
LAS PEDROÑERAS	Subterráneo	01/09/2014	0,84		55	778				
LOS HINOJOSOS	Subterráneo	25/08/2014	0,19	285	39	1.232	< 1			
MONREAL DEL LLANO	Subterráneo	13/05/2014	0,3	690	18	1.307	0			
MONTALBANEJO	Subterráneo	16/09/2014	0		18	715	< 1	<1	< 1	<1
MONTALBO	Subterráneo	09/09/2014	0,3	895	23	1.719	< 1			
MOTA DEL CUERVO	Subterráneo	25/08/2014	0,65	405	27	901				
OSA DE LA VEGA	Subterráneo	09/09/2014	0,1	246*	17	833	< 1			
PALOMARES DEL CAMPO	Subterráneo	29/07/2014	0,1	820	23	1.639	<1			_
PAREDES	? Cubtanina	25/11/2013	0	416	18	1.143	0	0	0	0
PEDRO MUÑOZ PINAREJO	Subterráneo Subterráneo	09/06/2010	0,3	510	39 21	1.215 651	< 1	1		0
POZORRUBIO	Subterráneo	28/07/2014	0,3	250	< LC	876	<1	<1	< 4	< 1
PUEBLA DE ALMENARA	Subterráneo	28/07/2014	0	230	34	542	< 4	<1	< 4	<1
RADA DE HARO	Subterráneo	13/05/2014	> 1,5	975	18	1.541	- 50			
ROZALEN DEL MONTE	?	25/11/2013	0	781	16	1.524	0	40	0	0
SACEDA-TRASIERRA	Subterráneo	18/11/2013	0,3		15	407	0			
SAELICES	Subterráneo	09/09/2014	> 1,5		25	499				
SAN CLEMENTE	?	18/08/2014	0,62	221	40*	685				
SANTA MARÍA DE LOS LLANOS	Subterráneo	25/08/2014	0,66	375	29	1.013				
SANTA MARÍA DEL CAMPO RUS	?	18/08/2014	0,21		64	728	0			
TARANCÓN	Superficial	21/07/2014	0	460	7	1.094	<1	< 1	< 1	< 1
TORREJONCILLO DEL REY	Subterráneo	29/07/2014	0,1		44	580	< 1			
TRESJUNCOS	Subterráneo	09/09/2014	0,6		19	752				
TRIBALDOS	Superficial	04/08/2014	0,5	246*	< LC	749				
UCLES	Subterráneo	04/08/2014	0,6		24	665				
VELLISCA	Superficial	04/08/2014	0,5	< LC	< LC	539				
VILLAESCUSA DE HARO	Subterráneo	09/09/2014	0,6	011	21	611				
VILLAMAYOR DE SANTIAGO	Subterráneo	13/05/2014	0,6	314	5 25	870	- 1			
VILLAMAYOR DE SANTIAGO VILLAR DE CAÑAS	Subterráneo Subterráneo	28/07/2014 16/09/2014	0,3	420	35 48	720 1.198	<1			
VILLAR DE CANAS VILLAR DE LA ENCINA	Subterraneo	09/09/2014	0,2	429	21	672	< 1			-
VILLAREJO DE FUENTES	Subterráneo	09/09/2014	0,6		19	390	< 1	<1	< 1	<1
VILLARES DEL SAZ	Subterráneo	16/09/2014	0,6	483	41	1.254	0.00000000			
VILLARRUBIO	Superficial	21/07/2014	0,5	264	< LC	767				
ZAFRA DE ZÁNCARA	Subterráneo	16/09/2014	0,3	349	20	1.018	< 1			
Criterios sanitarios de la calidad humano (Real Decreto 140/20	del agua de co	onsumo	1	250	50	2500	0	0	0	0
100000000000000000000000000000000000000	TA PARA EL C	And the second of the second			1	2				
AGUA APTA PARA EL CONSUMO (i brero, al no tener la concentración debe estar com	adecuada de d	desinfectante	residual. E		- puntos	que superan frec Sanitaria	uentemente el a para aguas d			n Tecnico
AGUA APTA PARA EL CONSUMO C	ON ALGÚN EL PRIDAD SANIT.		CEPCIONAL	O POR LA	Todas	las muestras ana				edes de
				_			ción de los m			


10.2. CONTENIDO EN NITRATOS EN LAS AGUAS DE ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA

Se han identificado un total de 6 municipios en los que el contenido en nitratos (NO_3) es superior habitualmente al límite establecido por la Reglamentación Técnica Sanitaria (NO_3 máx = 50 mg/L), figura 47.

La mayoría de estos abastecimientos, salvo el caso del municipio de Almonacid del Marquesado, se sitúan en el margen sur de la MASb Sierra de Altomira, coincidiendo con las zonas de regadío más extensas.

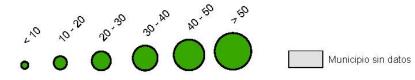
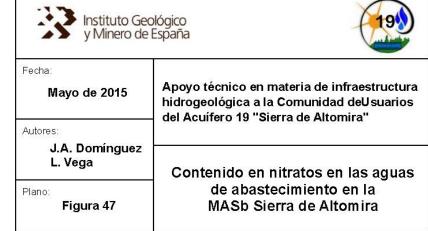

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	NO3 (mg/L)				
ALMONACID DEL MARQUESADO	Subterráneo	09/09/2014	57				
EL TOBOSO	Subterráneo	08/10/2013	52,9				
LA ALBERCA DE ZÁNCARA	?	18/08/2014	65				
LAS PEDROÑERAS	Subterráneo	01/09/2014	55				
SAN CLEMENTE	?	18/08/2014	40*				
SANTA MARÍA DEL CAMPO RUS	?	18/08/2014	64				
AGUA NO APTA PARA EL CONSUMO							
* CONCENTRACIÓN HABITUALMENTE POR EI	NCIMA DEL LÍMITE ESTABLECIDO	POR LA REGLAMENTAC	* CONCENTRACIÓN HABITUALMENTE POR ENCIMA DEL LÍMITE ESTABLECIDO POR LA REGLAMENTACIÓN VIGENTE				

Tabla 29. Municipios con un contenido en nitritos por encima del límite establecido para aguas de consumo humano

Leyenda


Nitratos en mg/L

MUNICIPIOS CON AGUAS DE ABASTECIMIENTO NO APTAS

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	NO3 (mg/l
ALMONACID DEL MARQUESADO	Subterráneo	09/09/2014	57
EL TOBOSO	Subterráneo	08/10/2013	52,9
LA ALBERCA DE ZÁNCARA	?	18/08/2014	65
LAS PEDROÑERAS	Subterráneo	01/09/2014	55
SAN CLEMENTE	?	18/08/2014	40*
SANTA MARÍA DEL CAMPO RUS	?	18/08/2014	64

* CONCENTRACIÓN HABITUALMENTE POR ENCIMA DEL LÍMITE ESTABLECIDO POR LA REGLAMENTACIÓN VIGENTE

10.3. CONTENIDO EN SULFATOS EN LAS AGUAS DE ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA

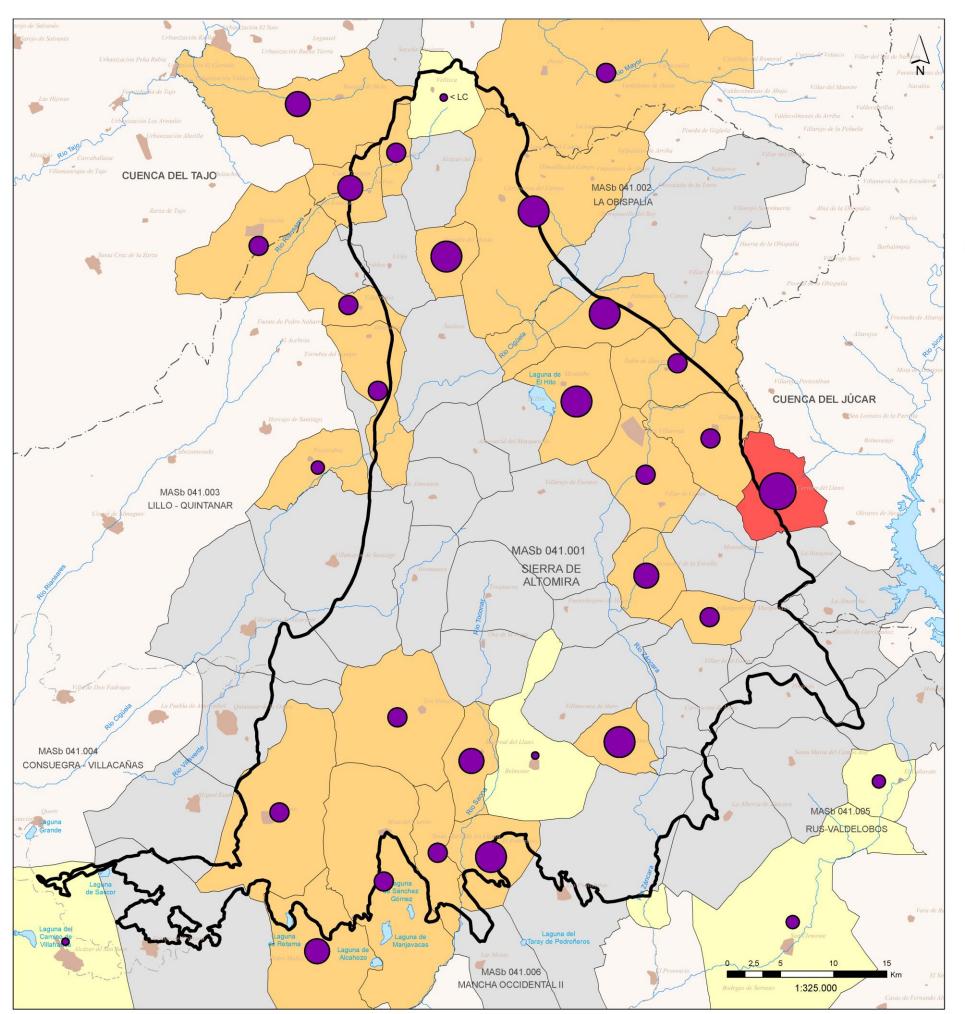
Se ha analizado el contenido en sulfatos de las aguas de abastecimiento de un total de 33 municipios, de los cuales solo en el municipio de Vellisca el contenido en este ión era inferior al límite de cuantificación.

En el resto de muestras no se han analizado los sulfatos al considerar que este elemento no está presente de forma significativa.

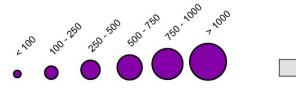
MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	504 (mg/L)
			SO4 (mg/L)
ALCÁZAR DE SAN JUAN	?	12/04/2011	66
ALCONCHEL DE LA ESTRELLA	Subterráneo	16/09/2014	646
ALMENDROS	Superficial	21/07/2014	286
BARAJAS DE MELO	Subterráneo	21/07/2014	702
BELMONTE	Subterráneo	09/09/2014	55
CARRASCOSA DEL CAMPO	Subterráneo	29/07/2013	813
CERVERA DEL LLANO	Subterráneo	16/09/2014	1.831
EL CAÑAVATE	Subterráneo	02/09/2014	149
EL PEDERNOSO	Subterráneo	01/09/2014	874
EL TOBOSO	Subterráneo	08/10/2013	443
HUELVES	Subterráneo	25/11/2013	584
HUETE	Subterráneo	04/08/2014	433
LOS HINOJOSOS	Subterráneo	25/08/2014	285
MONREAL DEL LLANO	Subterráneo	13/05/2014	690
MONTALBO	Subterráneo	09/09/2014	895
MOTA DEL CUERVO	Subterráneo	25/08/2014	405
OSA DE LA VEGA	Subterráneo	09/09/2014	246*
PALOMARES DEL CAMPO	Subterráneo	29/07/2014	820
PAREDES	?	25/11/2013	416
PEDRO MUÑOZ	Subterráneo	09/06/2010	510
POZORRUBIO	Subterráneo	28/07/2014	250
RADA DE HARO	Subterráneo	13/05/2014	975
ROZALEN DEL MONTE	?	25/11/2013	781
SAN CLEMENTE	?	18/08/2014	221
SANTA MARÍA DE LOS LLANOS	Subterráneo	25/08/2014	375
TARANCÓN	Superficial	21/07/2014	460
TRIBALDOS	Superficial	04/08/2014	246*
VELLISCA	Superficial	04/08/2014	<lc< td=""></lc<>
VILLALGORDO DEL MARQUESADO	Subterráneo	13/05/2014	314
VILLAR DE CAÑAS	Subterráneo	16/09/2014	429
VILLARES DEL SAZ	Subterráneo	16/09/2014	483
VILLARRUBIO	Superficial	21/07/2014	264
ZAFRA DE ZÁNCARA	Subterráneo	16/09/2014	349
AGUA APTA PARA EL CONSUMO CON ALGI			
	IO APTA PARA EL CONSUMO		
* CONCENTRACIÓN HABITUALMENTE POR ENC		DOR LA REGLAMENTACI	IÓN VIGENTE
CONCLIVINACION HABITUALIVIENTE POR ENC	TIVIA DEL LIIVILLE LO LADLECIDO	FOR LA REGLAMIENTACI	ON VIGLINIE

LC: Límite de Cuantificación

Si se observa la figura 48 se comprueba que las aguas con mayores contenidos en sulfatos se sitúan en el margen oriental de la MASb, con una muestra, la de Cervera del

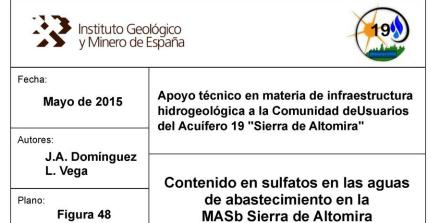

Tabla 30. Contenido en sulfatos de las aguas de abastecimiento de la MASb Sierra de Altomira

Llano, en la que la concentración en sulfatos es tan elevada que hace que adopte la calificación de NO APTA para el abastecimiento, elevando al mismo tiempo por encima del límite legal la conductividad eléctrica.


También el extremo sureste muestra una concentración de abastecimientos con contenidos en sulfatos significativos. En este sector destaca el abastecimiento de El Pedernoso, con 874 mg/L de SO₄.

Finalmente, también aparecen aguas sulfatadas en el tercio noroccidental de la MASb, en donde los municipios de Huelves y Barajas de Melo con 584 mg/L SO₄ y 702 mg/L SO₄, respectivamente, son los más destacados.

Leyenda


Sulfatos en mg/L

Municipio sin datos

MUNICIPIOS CON AGUAS DE ABASTECIMIENTO NO APTAS Y/O EXCEPCIONABLES

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	SO4 (mg/l)
ALCÁZAR DE SAN JUAN	?	12/04/2011	66
ALCONCHEL DE LA ESTRELLA	Subterráneo	16/09/2014	646
ALMENDROS	Superficial	21/07/2014	286
BARAJAS DE MELO	Subterráneo	21/07/2014	702
BELMONTE	Subterráneo	09/09/2014	55
CARRASCOSA DEL CAMPO	Subterráneo	29/07/2013	813
CERVERA DEL LLANO	Subterráneo	16/09/2014	1.831
EL CAÑAVATE	Subterráneo	02/09/2014	149
EL PEDERNOSO	Subterráneo	01/09/2014	874
EL TOBOSO	Subterráneo	08/10/2013	443
HUELVES	Subterráneo	25/11/2013	584
HUETE	Subterráneo	04/08/2014	433
LOS HINOJOSOS	Subterráneo	25/08/2014	285
MONREAL DEL LLANO	Subterráneo	13/05/2014	690
MONTALBO	Subterráneo	09/09/2014	895
MOTA DEL CUERVO	Subterráneo	25/08/2014	405
OSA DE LA VEGA	Subterráneo	09/09/2014	246*
PALOMARES DEL CAMPO	Subterráneo	29/07/2014	820
PAREDES	?	25/11/2013	416
PEDRO MUÑOZ	Subterráneo	09/06/2010	510
POZORRUBIO	Subterráneo	28/07/2014	250
RADA DE HARO	Subterráneo	13/05/2014	975
ROZALEN DEL MONTE	?	25/11/2013	781
SAN CLEMENTE	?	18/08/2014	221
SANTA MARÍA DE LOS LLANOS	Subterráneo	25/08/2014	375
TARANCÓN	Superficial	21/07/2014	460
TRIBALDOS	Superficial	04/08/2014	246*
VELLISCA	Superficial	04/08/2014	<lc< td=""></lc<>
VILLALGORDO DEL MARQUESADO	Subterráneo	13/05/2014	314
VILLAR DE CAÑAS	Subterráneo	16/09/2014	429
VILLARES DEL SAZ	Subterráneo	16/09/2014	483
VILLARRUBIO	Superficial	21/07/2014	264
ZAFRA DE ZÁNCARA	Subterráneo	16/09/2014	349
AGUA APTA PARA EL CONSUMO CON A	LGÚN ELEMENTO EXCE SANITARIA	PCIONADO POR L	A AUTORIDAD
AGUA NO	APTA PARA EL CONSUM	ЛО	
* CONCENTRACIÓN HABITUALMEN	TE POR ENCIMA DEL LÍN AMENTACIÓN VIGENTE	MITE ESTABLECID	O POR LA

LC: Límite de Cuantificación

10.4. CONDUCTIVIDAD ELÉCTRICA EN LAS AGUAS DE ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA

El valor de la conductividad eléctrica puede emplearse como un indicativo evidentemente cuantitativo, pero también cualitativo, de la calidad de las aguas ya que es reflejo de la cantidad de sales disueltas en las mismas. Por ello se ha incluido, en la figura 50, un plano en el que se muestran los valores de conductividad eléctrica en las aguas de abastecimiento de los municipios de la MASb Sierra de Altomira.

Como referencia se indica que:

- las aguas subterráneas presentan valores medios de entre 100 y 200 μs/cm de conductividad eléctrica (véase Tabla 4 del apartado 7 de este estudio)
- las aguas dulces se considera que tienen una conductividad eléctrica menor a los 2.000 μs/cm.
- el límite establecido por la Reglamentación Técnico-Sanitaria para aguas de consumo humano para este parámetro es de 2.500 μs/cm.

De todas las muestras recopiladas, tabla 31, únicamente la correspondiente al municipio de Cervera del Llano excede el límite legal vigente. Ello está directamente relacionado con la elevada concentración en sulfatos que también presentan sus aguas.

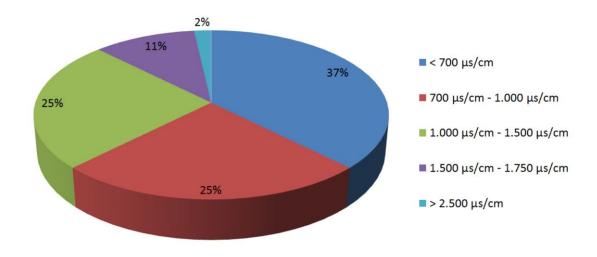
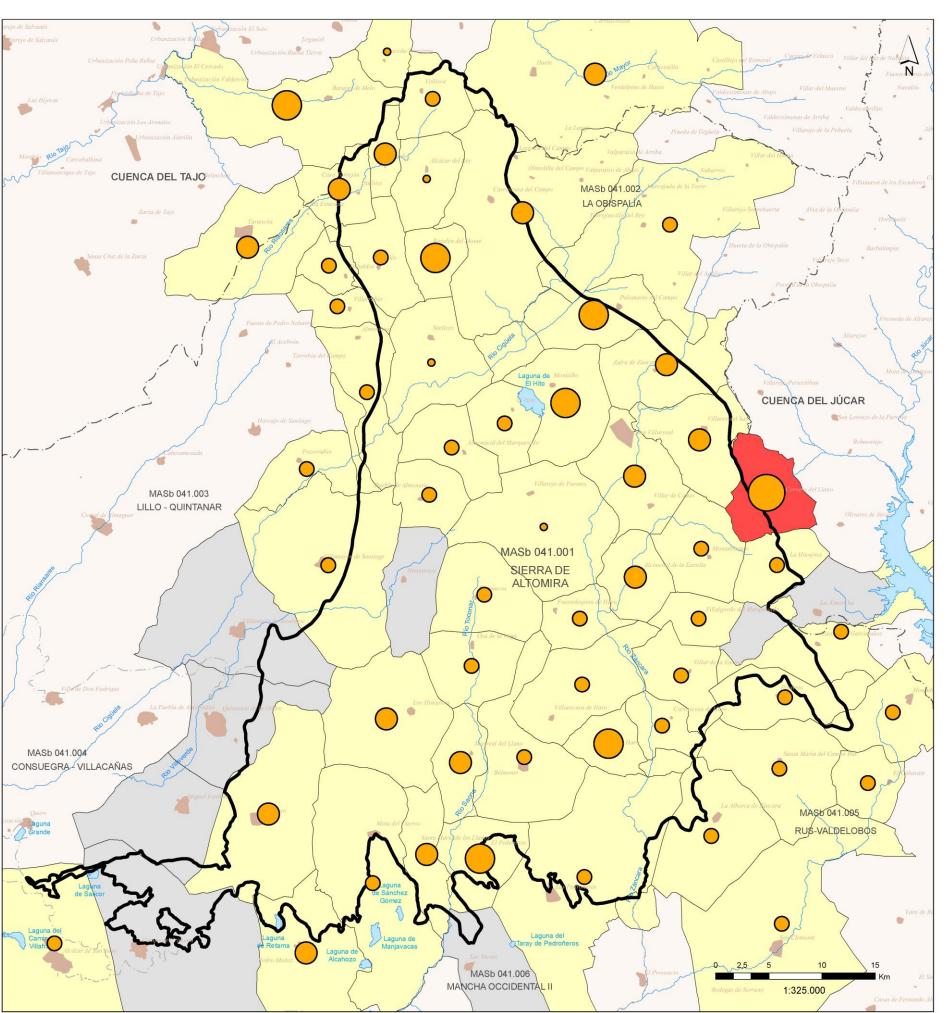


Figura 49. Valores de conductividad eléctrica en las aguas de abastecimiento de la MASb Sierra de Altomira

El resto de muestras presentan conductividades por debajo de 1.750 µs/cm.

Tal como se muestra en el gráfico de la figura 49, en un 62 % de los casos el valor de la conductividad eléctrica de las aguas de abastecimiento es inferior a los 1.000 μs/cm. Se trata de aguas claramente dulces aunque con cierta salinidad que las aleja de los valores en torno a los 200 μs/cm (valores medios) propios de las aguas subterráneas.


En un 25 % las aguas tienen conductividades eléctricas comprendidas entre 1.000 y $1.500 \, \mu \text{s/cm}$.

Solo un 11 % de las muestras se sitúan entre los 1.500 y 1750 μ s/cm. y, como se ha comentado, en un único caso se supera el límite de potabilidad con un valor de 2.570 μ s/cm.

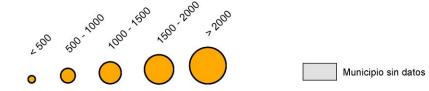
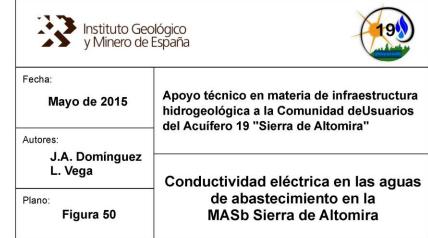

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	Conductividad 20º (μS/cm)
ALCÁZAR DE SAN JUAN	?	12/04/2011	629
ALCÁZAR DEL REY	Subterráneo	04/08/2014	500
ALCONCHEL DE LA ESTRELLA	Subterráneo	16/09/2014	1.390
ALMENDROS	Superficial	21/07/2014	763
ALMONACID DEL MARQUESADO	Subterráneo	09/09/2014	650
BARAJAS DE MELO	Subterráneo	21/07/2014	1.535
BELMONTE	Subterráneo	09/09/2014	693
CARRASCOSA DE HARO	Subterráneo	09/09/2014	653
CARRASCOSA DEL CAMPO	Subterráneo	29/07/2013	1.320
CASTILLO DE GARCIMUÑOZ	Subterráneo	02/09/2014	593
CERVERA DEL LLANO	Subterráneo	16/09/2014	2.570
EL CAÑAVATE	Subterráneo	02/09/2014	786
EL HITO	Subterráneo	09/09/2014	610
EL PEDERNOSO		1. 1.	1.745
	Subterráneo	01/09/2014	
EL TOBOSO	Subterráneo	08/10/2013	1.220
FUENTELESPINO DE HARO	Subterráneo	09/09/2014	529
HONRUBIA	Subterráneo	02/09/2014	570
HUELVES	Subterráneo	25/11/2013	1.335
HUETE	Subterráneo	04/08/2014	1.084
LA ALBERCA DE ZÁNCARA	?	18/08/2014	713
LA HINOJOSA	Subterráneo	16/09/2014	676
LAS PEDROÑERAS	Subterráneo	01/09/2014	778
LOS HINOJOSOS	Subterráneo	25/08/2014	1.232
MONREAL DEL LLANO	Subterráneo	13/05/2014	1.307
MONTALBANEJO	Subterráneo	16/09/2014	715
MONTALBO	Subterráneo	09/09/2014	1.719
MOTA DEL CUERVO	Subterráneo	25/08/2014	901
OSA DE LA VEGA	Subterráneo	09/09/2014	833
PALOMARES DEL CAMPO	Subterráneo	29/07/2014	1.639
PAREDES	?	25/11/2013	1.143
PEDRO MUÑOZ	Subterráneo	09/06/2010	1.215
PINAREJO	Subterráneo	02/09/2014	651
POZORRUBIO	Subterráneo	28/07/2014	876
PUEBLA DE ALMENARA	Subterráneo	28/07/2014	542
RADA DE HARO	Subterráneo	13/05/2014	1.541
ROZALEN DEL MONTE	?	25/11/2013	1.524
SACEDA-TRASIERRA	Subterráneo	18/11/2013	407
SACEDA-TRASIERRA	Subterráneo	09/09/2014	499
SAN CLEMENTE	?	18/08/2014	685
SANTA MARÍA DE LOS LLANOS	Subterráneo	25/08/2014	1.013
SANTA MARÍA DEL CAMPO RUS	?	18/08/2014	728
TARANCÓN	Superficial	21/07/2014	1.094
TORREJONCILLO DEL REY	Subterráneo	29/07/2014	580
TRESJUNCOS	Subterráneo	09/09/2014	752
TRIBALDOS	Superficial	04/08/2014	749
UCLES	Subterráneo	04/08/2014	665
VELLISCA	Superficial	04/08/2014	539
VILLAESCUSA DE HARO	Subterráneo	09/09/2014	611
VILLALGORDO DEL MARQUESADO	Subterráneo	13/05/2014	870
VILLAMAYOR DE SANTIAGO	Subterráneo	28/07/2014	720
VILLAR DE CAÑAS	Subterráneo	16/09/2014	1.198
VILLAR DE LA ENCINA	?	09/09/2014	672
VILLAREJO DE FUENTES	Subterráneo	09/09/2014	390
VILLARES DEL SAZ	Subterráneo	16/09/2014	1.254
	Superficial	21/07/2014	767
VILLARRUBIO			

Tabla 31. Conductividad eléctrica en las aguas de abastecimiento de la MASb Sierra de Altomira


Leyenda

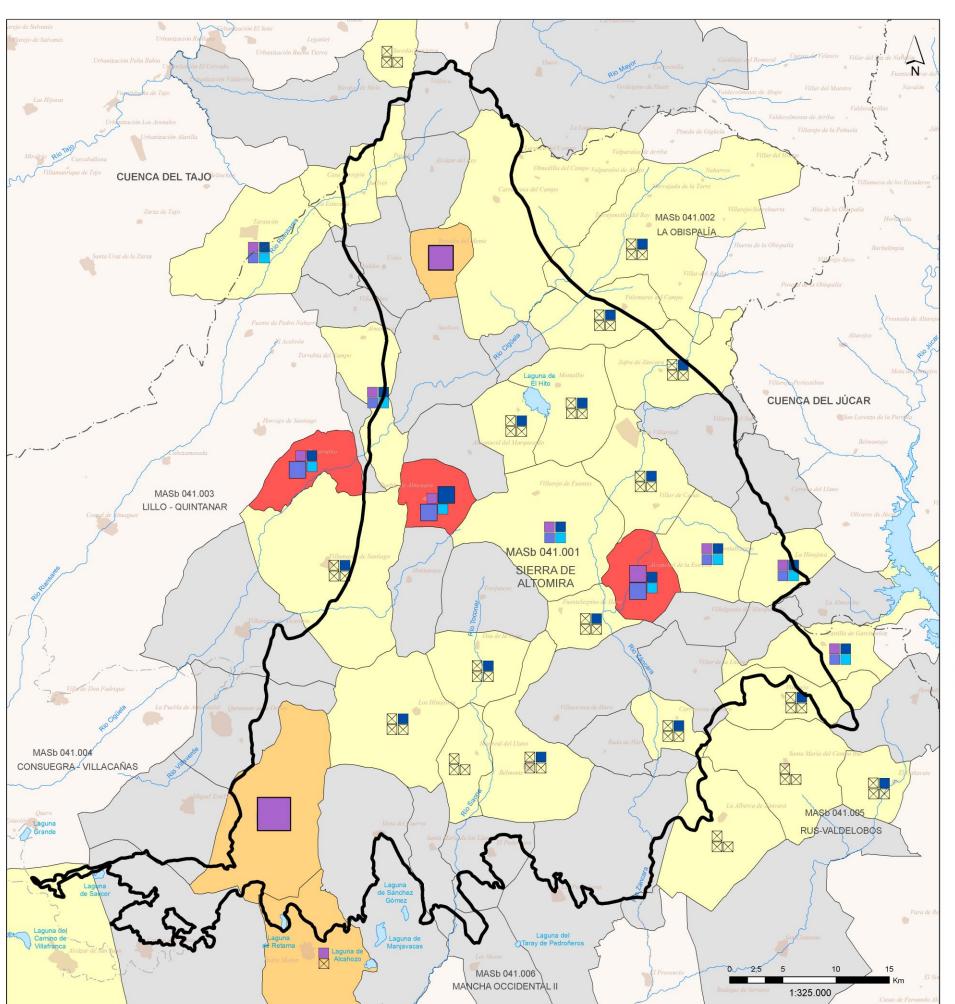
Conductividad Eléctrica (µS/cm)

MUNICIPIOS CON AGUAS DE ABASTECIMIENTO NO APTAS

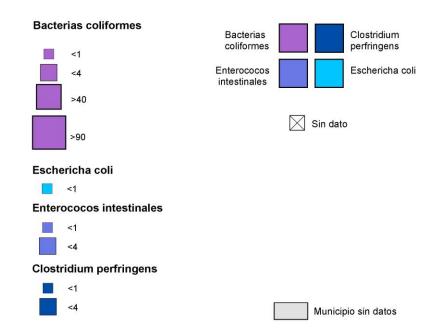
MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	Conductividad 20° (µS/cm)	
CERVERA DEL LLANO	Subterráneo	16/09/2014	2.570	
AGUA NO APTA PARA EL CONSUMO				

10.5. CONTENIDO EN ELEMENTOS PATÓGENOS EN LAS AGUAS DE ABASTECIMEINTO DE LA MASB SIERRA DE ALTOMIRA

La figura 51 permite identificar claramente la disposición zonal de las aguas de abastecimiento en las que la presencia de microorganismos redunda en un empeoramiento de la calidad de las mismas.

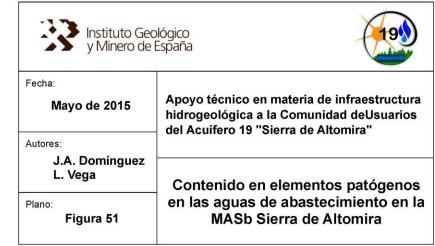

Es evidente la concentración de aguas de mala calidad, por presencia de microorganismos, en la zona central de la MASb, en una estrecha franja que va desde Pozorrubio, al oeste, hasta Castillo de Garcimuñoz, al este.

Se cuenta con un total de 34 análisis químicos en los que se ha analizado la presencia de microorganismos, de los que, solo en 6 se han detectado.


En estos 6 municipios, tal como se ve en la tabla 32, la presencia de Clotridium perfringens o Enterococos intestinales hace que las aguas se califiquen como NO APTAS para el consumo, mientras que en otros 3, es la presencia de Bacterias coliformes lo que permite calificar a las aguas como APTAS pero con un exceso en dicho parámetro, que se incluye dentro de la parte C del anexo I del Real Decreto 140/2003, de 7 de febrero (figura 43).

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	Clostridium perfringens (ufc/100 ml)	Bacterias coliformes (ufc/100 ml)	Enterococos intestinales (ufc/100 ml)	
ALCONCHEL DE LA ESTRELLA	Subterráneo	16/09/2014	<1	< 4	< 4	
EL TOBOSO	Subterráneo	08/10/2013	0	93	0	
PEDRO MUÑOZ	Subterráneo	09/06/2010	0	1		
POZORRUBIO	Subterráneo	28/07/2014	<1	<1	< 4	
PUEBLA DE ALMENARA	Subterráneo	28/07/2014	< 4	<1	< 4	
ROZALEN DEL MONTE	?	25/11/2013	0	40	0	
AGUA APTA	AGUA APTA PARA EL CONSUMO CON ALGÚN ELEMENTO EXCEPCIONADO POR LA AUTORIDAD SANITARIA					
		AGUA N	O APTA PARA EL CONSUN	ЛО		

Tabla 32. Municipios de la MAS Sierra de Altomira con aguas NO APTAS por contaminantes microbiológicos o excepcionadas por presencia de bacterias coliformes.



Leyenda

MUNICIPIOS CON AGUAS DE ABASTECIMIENTO NO APTAS Y/O EXCEPCIONABLES

MUNICIPIO	ORIGEN DEL AGUA	FECHA TOMA	Clostridium perfringens (ufc/100 ml)	Bacterias coliformes (ufc/100 ml)	Enteroco intestina (ufc/100	
ALCONCHEL DE LA ESTRELLA	Subterráneo	16/09/2014	< 1	< 4	< 4	
EL TOBOSO	Subterráneo	08/10/2013	0	93	0	
PEDRO MUÑOZ	Subterráneo	09/06/2010	0	1		
POZORRUBIO	Subterráneo	28/07/2014	< 1	< 1	< 4	
PUEBLA DE ALMENARA	Subterráneo	28/07/2014	< 4	< 1	< 4	
ROZALEN DEL MONTE	?	25/11/2013	0	40	0	
AGUA APTA PARA EL CONSUMO CON ALGÚN ELEMENTO EXCEPCIONADO POR LA AUTORIDAD SANITARIA AGUA NO APTA PARA EL CONSUMO						

11. RESUMEN Y CONCLUSIONES

Como se ha comentado, el objetivo del presente estudio es establecer una valoración de las características químicas y la calidad de las aguas subterráneas y de abastecimiento en el ámbito de la Masa de Agua Subterránea (MASb) Sierra de Altomira (041.001). Todo ello al amparo del Convenio Específico de Colaboración entre el Instituto Geológico y Minero de España (IGME) y la Comunidad de Usuarios del Acuífero 19 "Sierra de Altomira", que se firmó en julio de 2012 con el fin de que este Organismo aportara apoyo técnico en materia de infraestructura hidrogeológica y aguas subterráneas a la Comunidad de Usuarios estableciendo un intercambio de información entre ambas entidades.

Para ello se ha recopilado y analizado un importante volumen de datos y documentación.

La Comunidad de Usuarios ha solicitado a los ayuntamientos de la zona las analíticas de las aguas de abastecimiento, mientras que técnicos del Instituto Geológico y Minero de España han realizado dos campañas de muestreo, en febrero y octubre del año 2014, en varios de los sondeos de observación de la red establecida dentro de la MASb.

Toda esta documentación ha sido revisada en profundidad y se ha agrupado para su análisis en dos bloques fundamentales.

El primero incluye los resultados de las muestras de la red de observación establecida por el IGME. Con estos análisis se ha tratado de relacionar los diferentes tipos de aguas con acuíferos (niveles permeables o formaciones geológicas) determinados.

En el segundo bloque se incorpora toda la información referente a las aguas de abastecimientos de los municipios de la MASb. Con estas analíticas se ha procedido a calificar las aguas de las redes de distribución en función de su aptitud para el consumo humano e identificar, en los casos en los que estos se presentaran, sus principales elementos contaminantes.

La red de muestreo analítico establecida por el IGME en la MASb Sierra de Altomira consta de un total de 14 puntos, de los que se han tomado muestras en dos campañas (febrero y octubre de 2014).

Utilizando diagramas de Piper y de Schoeller-Berkaloff para representar los resultados, se han determinado en un primer momento las principales familias de aguas de la zona. En la campaña de febrero de 2014 se establecen dos grupos fundamentales, aguas sulfatadas cálcicas y aguas bicarbonatadas cálcicas, mientras que en octubre, aún predominando las facies hidroquímicas anteriores, se incrementan las muestras magnésicas.

El estudio individualizado de las muestras indica que, en la mayoría de los casos, las características químicas no varían con el tiempo, salvo de forma leve ganando o perdiendo presencia determinados elementos.

Posteriormente, se ha realizado un análisis de las muestras por acuíferos, con objeto de caracterizar las aguas de los mismos. No obstante, el reducido número de muestras que se puede correlacionar de forma segura con un nivel permeable o acuífero concreto ha impedido sacar conclusiones al respecto, de forma que no es posible establecer unas características químicas concretas para cada acuífero de la zona.

La variedad de formaciones geológicas del área, de acuíferos o sectores acuíferos hidráulicamente independientes, es consecuente con la variedad de facies hidroquímicas presentes en las aguas subterráneas. Así, por ejemplo, en los niveles permeables terciarios aparecen desde aguas bicarbonatadas cálcicas a aguas con facies cloruradas bicarbonatadas cálcico-sódicas, predominando las aguas sulfatadas cálcicas.

Esta misma variedad se evidencia en las aguas de los diferentes acuíferos cretácicos en los que predominan las aguas bicarbonatadas magnésicas a clorurado magnésicas, siendo también más frecuentes las aguas sulfatadas.

Como solo se cuenta con una muestra asociada al acuífero Jurásico no se puede establecer una facies hidroquímica general para el mismo. Las aguas del único punto de observación asociado con este acuífero tienen una facies hidroquímica sulfatada cálcica en febrero de 2014, pero que pasa a una facies sulfatada magnésico cálcica en octubre del mismo año.

Se ha realizado también un análisis zonal de los resultados representando los mismos en diferentes planos con objeto de facilitar su comprensión.

En líneas generales no se puede establecer una zonación clara de las aguas subterráneas dentro de la MASb Sierra de Altomira según sus facies hidroquímicas, básicamente por la escasez de puntos de muestreo que, por ejemplo, en el tercio septentrional de la MASb es absoluta. Aun así, se realiza un análisis de las facies hidroquímicas según los sectores acuíferos diferenciados a partir de los registros de piezometría de los niveles permeables del Cretácico obtenidos en las campañas de medidas llevadas a cabo desde 2012 (IGME 2014).

Se establecen tres sectores que dividen la mitad sur de la MASb.

De este a oeste se tiene:

- Un sector Suroriental, desde la sierra de Zafra y Villares del Saz, al norte, hasta las elevaciones cercanas a Villargordo del Marquesado y Castillo de Garcimuñoz, en el extremo sureste de la MASb, en el que se puede considerar que existe continuidad hidráulica. No obstante, las facies hidroquímicas de las cuatro muestras de la zona son distintas. Aunque dos de las muestras son de aguas de niveles terciarios, y las otras dos de cretácicos, no existe correspondencia de facies ni dentro de los mismos niveles acuíferos. Las facies presentes incluyen aguas sulfatadas cálcicas, cloruradas bicarbonatadas cálcico-sódicas, bicarbonatadas magnésicas o sulfatadas bicarbonatadas-cálcicas. Estas diferencias indican la posible distinta evolución química de las aguas y la alta compartimentación en sectores acuíferos independientes que puede producirse en toda la MASb, fruto tanto

de la variedad deformaciones geológicas del Terciario y Cretácico como por una tectónica compleja que individualiza hidráulicamente diversos sectores.

- Se establece igualmente un sector Central, encuadrado entre el río Gigüela al norte y los ríos Záncara y Toconar-Saona al este y oeste respectivamente, en el que se han definido, a partir únicamente de tres muestras asociadas a distintos niveles acuíferos, dos facies hidroquímicas, correspondientes a aguas bicarbonatado cálcicas y clorurado magnésicas.
- En el margen oeste de la MASb se ha establecido el sector Suroccidental, limitado al este por el río Toconar y al norte por el Gigüela. En el mismo, a partir de siete muestras, se han diferenciado únicamente dos grupos de aguas, sulfatadas y bicarbonatadas, situándose estas últimas además, en el extremo más suroccidental de la MASb.

Una vez analizadas las muestras tanto colectiva como individualmente, por acuíferos y de forma zonal según sus facies hidroquímicas, se pasa a un estudio pormenorizado de sus contenidos elementales intentando asociar algunos elementos destacados con las formaciones geológicas o acuíferos captados.

Con el fin de tener unos parámetros guía indicativos de la calidad química de cada nuestra, los resultados se comparan con los límites establecidos por la reglamentación vigente para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero). En este sentido, destaca que de los catorce puntos de observación, en 11 de ellos se supera ampliamente el contenido en sulfatos y/o nitratos marcado como límite en la mencionada legislación.

Se realizan mapas representando las concentraciones en nitratos, sulfatos y la conductividad eléctrica y se intenta establecer el origen, natural o antrópico, de las altas concentraciones en estos elementos.

Así, por ejemplo, un alto contenido en nitratos en las aguas subterráneas suele ser frecuente en áreas dedicadas a la agricultura en las que se aplican al terreno fertilizantes que percolan hasta los acuíferos.

Por su parte, los elevados contenidos en sulfatos tienen su origen en el lavado por parte de las aguas subterráneas de formaciones en las que hay presencia de yesos. Entre estas, tienen especial relevancia las del tránsito Cretácico-Terciario y algunas del propio Terciario. Un ejemplo destacado son el manantial de Saona que supera los 1.500 mg/L de SO₄ y el cercano Pozo Marqués con casi 1.200 mg/L de SO₄, en los que las aguas subterráneas que drenan o captan se ven influenciadas por la presencia de los materiales de la denominada Unidad Neógena, constituida, en esta zona, por niveles de arcillas y yesos.

La valoración de la conductividad eléctrica refleja claramente las muestras en las que el contenido en sales disueltas es mayor. Los valores más elevados en conductividad eléctrica superan claramente el límite que establece la Reglamentación Técnico

Sanitaria para aguas de consumo público fijado en 2.500 µS/cm y coinciden con los mencionados, nacimiento del río Saona y pozo Marqués.

Zonalmente, pese a la escasez de muestras analizadas y a que se trata de aguas de distintos niveles permeables desconectados entre sí, se puede indicar que las aguas con conductividades eléctricas menores se encuentran en la mitad oriental de la MASb, mientras que hacia el suroeste las concentraciones elementales son mayores y consecuentemente también los registros de conductividad.

Una vez analizada la hidroquímica de las muestras obtenidas en la red de observación de las aguas subterráneas de la MASb Sierra de Altomira se ha procedido a valorar la calidad y características de las aguas de abastecimiento de los municipios de este entorno geográfico.

Se han recopilado análisis químicos de las aguas de abastecimiento de un total de 66 municipios, de los cuales 55 se sitúan total o parcialmente dentro de la MASB Sierra de Altomira. No se han obtenido datos analíticos de las aguas de abastecimiento de los municipios de Campo de Criptana, Campos del paraíso, Hontanaya, La Almarcha, Las Mesas, Miguel Esteban, Quintanar de la Orden y Villanueva de Alcardete.

La información ha sido tratada de forma global para el conjunto de la MASb e individualmente por núcleos urbanos (municipios). Así, se han diferenciado cuatro categorías de aguas en función de su calidad de acuerdo con lo estipulado en el Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano, y que básicamente son:

1.- AGUAS APTAS PARA EL CONSUMO

- 2.- AGUAS APTAS PARA EL CONSUMO con concentración inadecuada de desinfectante residual.
- 3.- AGUAS APTAS PARA EL CONSUMO con alteración de algún parámetro de la parte C del Anexo I del Real Decreto 140/2003, de 7 de febrero

4.- AGUAS NO APTAS PARA EL CONSUMO

Zonalmente, la MASb Sierra de Altomira se puede dividir, de norte a sur y de forma aproximada, en cuatro áreas o zonas según la aptitud de sus aguas de abastecimiento:

- En el tercio septentrional, por encima de la laguna de El Hito, todos los municipios presentan aguas APTAS para el consumo, aunque la presencia de sulfatos es generalizada.
- Al sur de la Laguna de El Hito y hasta la divisoria imaginaria que se situaría a la altura de Alconchel de la Estrella, se ubican una serie de municipios con aguas NO APTAS para el consumo por la presencia de elementos patógenos, exceso en nitratos y/o muy alta concentración en sulfatos.

- Los municipios ubicados en la mitad meridional de la MASb Sierra de Altomira se abastecen con aguas en general APTAS para el consumo humano. En algunos casos con concentraciones excepcionables en sulfatos.
- En el extremo sur de la MASb y fuera de los límites de la misma varios municipios se abastecen con aguas NO APTAS para el consumo por la elevada concentración en nitratos.

Finalmente, se han realizado mapas por elementos con objeto de identificar áreas en las que predominara la presencia de uno otro componente.

En la zona de estudio, el elemento que principalmente incumple la normativa vigente es el sulfato. Las aguas subterráneas quedan enriquecidas en este elemento generalmente de forma natural, al lavar niveles yesíferos presentes en las formaciones geológicas del área. Normalmente, las autoridades sanitarias excepcionan concentraciones en este elemento por encima del límite legal con objeto de garantizar el abastecimiento a la población siempre que consideren que las mismas no llegan a ser perjudiciales para la salud. Pese a ello se realizan una serie de recomendaciones entre las que lógicamente se incluye la búsqueda de fuentes alternativas que aporten un agua con una calidad aceptable para su incorporación al sistema de abastecimiento de agua de consumo.

En la zona de estudio, un 34 % de los municipios muestran concentraciones elevadas en sulfatos que son excepcionadas en la mayoría de los casos.

El mapa que representa la concentración en este ión en las aguas de abastecimiento permite comprobar que es en el margen oriental de la MASb donde son más frecuentes concentraciones elevadas en este ión, llegando en algún caso a impedir su excepcionabilidad.

También en el extremo sureste se agrupan municipios con aguas sulfatadas, así como en el tercio noroccidental de la MASb.

No obstante, el principal elemento que con una concentración por encima del límite legal obliga a la calificación de AGUA NO APTA para el consumo es el nitrato, seguido por la presencia de elementos patógenos.

Dentro de la MASb Sierra de Altomira, un total de 16 municipios (22 % del total) se abastecen de aguas contaminadas por uno o ambos elementos.

Para el caso de los nitratos, de los 6 municipios en los que este elemento hace NO APTAS sus aguas de abastecimiento, 5 se sitúan en el margen sur de la MASb, coincidiendo con las zonas de regadío más extensas.

En un solo caso (Cervera del Llano) el calificativo de NO APTO es por un contenido en sulfatos tal que no es excepcionable y que incluso hace que el valor de la conductividad eléctrica supera también su límite legal para aguas potables.

Se ha realizado también un plano representativo del valor de la conductividad eléctrica en las aguas de abastecimiento, que puede dar una idea de la calidad general de las mismas asumiendo que este valor está directamente relacionado con la cantidad de sales disueltas.

Únicamente una de las muestras supera el límite de conductividad eléctrica fijado en 2.500 μs/cm por la Reglamentación Técnico-Sanitaria para aguas de consumo humano. Se trata de las aguas del municipio de Cervera del Llano y este alto valor está directamente relacionado con la elevada concentración en sulfatos que también presentan sus aguas.

Por último, se ha incluido un plano en el que queda representada la contaminación microbiológica en las aguas analizadas.

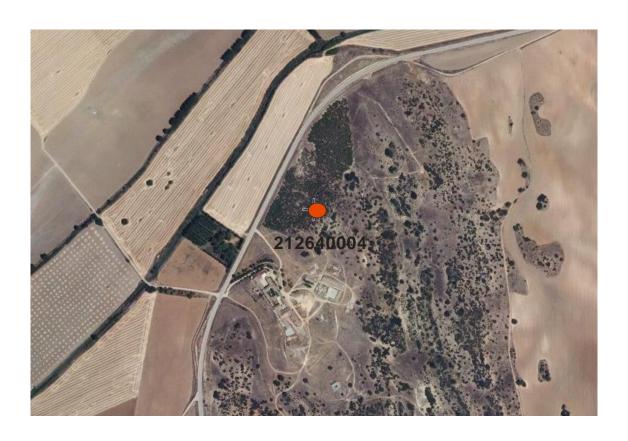
La presencia de Clotridium perfringens o Enterococos intestinales hace que las aguas de tres municipios se califiquen como NO APTAS para el consumo. Mientras que en otros tres casos se califican como APTAS pese a la presencia, excepcionada, de bacterias coliformes.

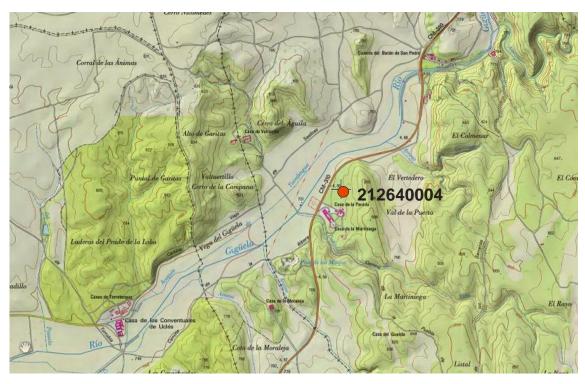
La disposición dentro de la MASb de los principales abastecimientos con este tipo de problemas se centra en una estrecha franja que va desde Pozorrubio, al oeste, a Castillo de Garcimuñoz, al este.

Valencia, 14 de mayo de 2015

12. BIBLIOGRAFÍA

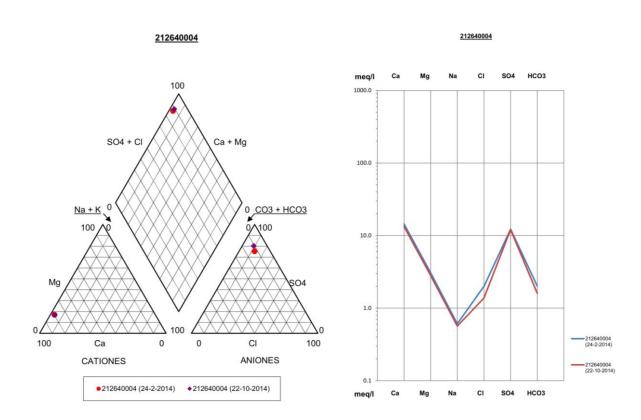
- CE 2000. Directiva 2000/60/EC del Parlamento Europeo y del Consejo por la que se establece un marco comunitario de actuación en el ámbito de la política de aguas. Comisión Europea, Luxemburgo.
- Chebotarev, I.I. (1955) Metamorphism of Natural Waters in the Crust of Weathering. Geochim. Cosmochim. Acta, 8: 22-48.
- Diccionarios Oxford-Complutense. Ciencias de la Tierra (2000). ISBN:84-89784-77-9
- IGME (2014). 5º Informe de evolución piezométrica de la Masa de Agua Subterránea "Sierra de Altomira" (041.001)". Años 1982-2014.
- ITGE (1975). Plan Nacional de Investigación de Aguas Subterráneas. (PNIAS). Madrid.
- ITGE (1979). Investigación hidrogeológica de la cuenca alta y media del Guadiana. Informe final (Sistema 19: Sierra de Altomira, Sistema 20: Mancha de Toledo, Sistema 22: Cuenca del río Bullaque, Sistema 23: Llanura Manchega, Sistema 24: Campo de Montiel). Plan Nacional de Investigación en Aguas Subterráneas (PNIAS). Instituto Tecnológico GeoMinero de España.
- DGOH–ITGE (1988). Estudio de delimitación de las unidades hidrogeológicas del territorio peninsular e Islas Baleares, y síntesis de sus características. Dirección General de Obras Hidráulicas e Instituto Tecnológico GeoMinero de España. Madrid. 58 pp.
- ITGE (1989). Las aguas subterráneas en España. Estudio de síntesis.
- Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano.
- Vázquez Suñé, E. (2002). Programa para representación de resultados analíticos EASY-QUIM.4.
- Vázquez Suñé, E. (2009). Hidrogeología. Conceptos básicos de hidrogeología subterránea. Fundación Centro Internacional de Hidrología Subterránea.
- Winter TC, Harvey JW, Franke OL, Alley WM (1998). Ground water and surface water a single resource. US Geological Survey. Circular 1139


ANEXO I: RED DE CALIDAD ESTABLECIDA POR EL IGME EN LA MASB SIERRA DE ALTOMIRA

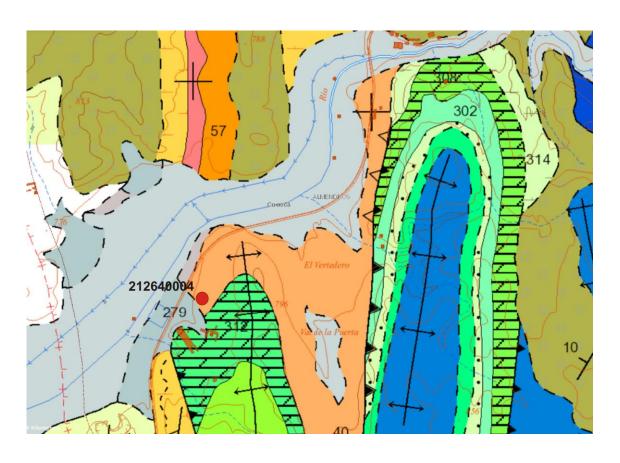


Nº IGME / NOMBRE	COORD X (ED 50)	COORD Y (ED 50)	ACUÍFERO	CAMPAÑAS
212640004	510882	4408477	TERCIARIO	24/02/2014
212040004	510662	4400477	TERCIARIO	22/10/2014
212770001	501630	4378056	MIOCENO	27/02/2014
212820001	498113	4370956	TERC+CRET	27/02/2014
212820001	490113	4370930	TENCTONET	23/10/2014
212830006	502354	4368084	CRETÁCICO	27/02/2014
212830000	302334	4308084	CKLTACICO	23/10/2014
222580011	538366	4416690	Q+TERCIARIO	28/02/2014
222360011	338300	4410090	Q+TERCIARIO	22/10/2014
222580012	537348	4416181	CRETACICO	28/02/2014
222360012	337346	4410101	CRETACICO	22/10/2014
222620003	525787	4402385	MIOCENO	26/02/2014
222640010	539126	4400775	MIOCENO	24/02/2014
222040010	339120	4400773	MIOCENO	22/10/2014
222770003	528341	4380544	CRETÁCICO	28/02/2014
222770003	320341	4300344	CRETACICO	22/10/2014
222810007	517321	4372007	JURÁSICO	27/02/2014
222010007	31/321	4372007	JUNASICO	23/10/2014
222830001	531713	4366943	CRET+JURA	28/02/2014
232720019	552053	4390077	CRETÁCICO	22/10/2014
Pozo del Marqués	517558	4373449	CRETÁCICO	15/10/2014
Nacimiente Cacra	E17201	4274090	CRETÁCICO	05/03/2014
Nacimiento Saona	517391	4374080	CRETACICO	15/10/2014

Nº IGME: 212640004 (ALMENDROS)



FACIES HIDROQUÍMICA

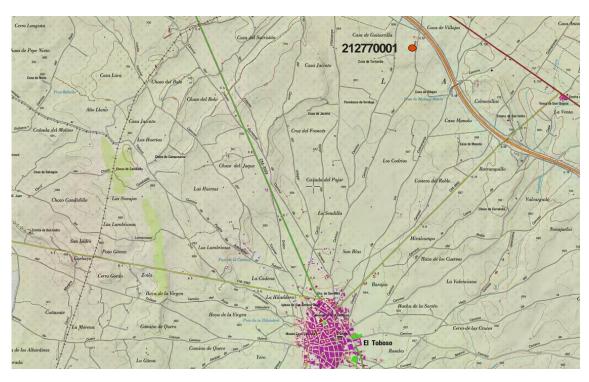


RESULTADOS ANALÍTICOS

Nº IGME	FECHA	Na	к	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
212640004	24/02/2014	14	9	288	37	71	588	123	0	66	0	0	0	13,5	1,1	1216	7,51
	22/10/2014	13	10	266	34	49	580	98	0	76	0	0	0	14,9	0,9	1339	7,94
Concentració	Concentraciones on mg/L: Conductividad eléctrica on us/cm; nH on unidades de nH																

ACUÍFERO CAPTADO

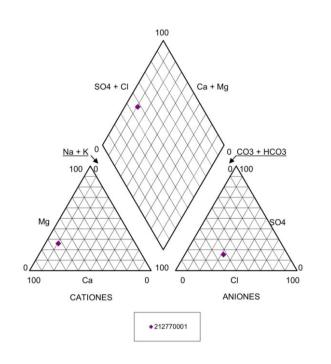
Profundidad de la captación: 23 m

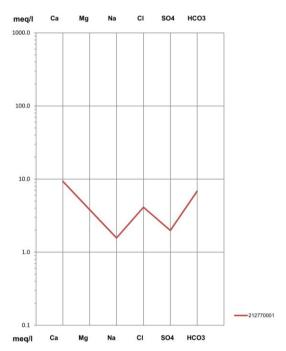

Profundidad del nivel piezométrico: 7,98 m (16/3/2015)


Columna litológica atravesada y acuífero captado: areniscas grises y

amarillentas de Eoceno superior – Oligoceno inferior

Nº IGME: 212770001 (EL TOBOSO)

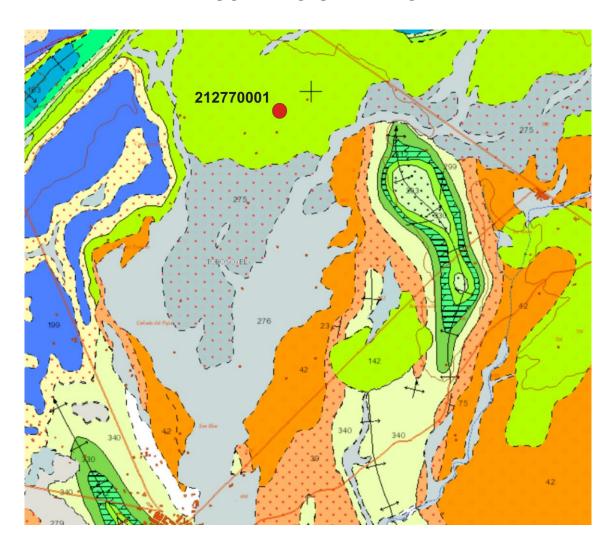




FACIES HIDROQUÍMICA

FACIES HIDROQUÍMICA DEL PUNTO 212770001 (febrero de 2014)

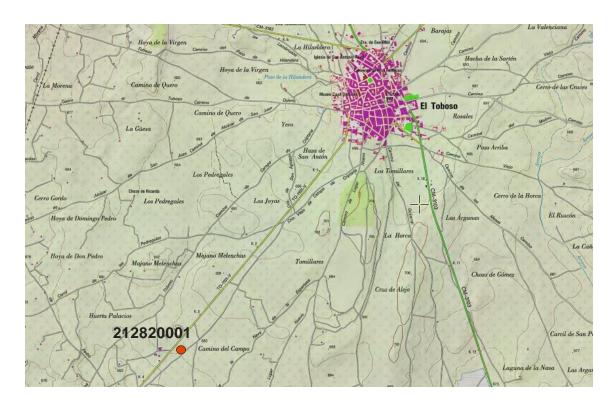
FACIES HIDROQUÍMICA DEL PUNTO 212770001 (febrero de 2014)



RESULTADOS ANALÍTICOS

Nº IGME	FECHA	Na	К	Са	Mg	Cl	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
212770001	27/02/2014	36	2	186	46	146	95	416	0	66	0	0	0	20,1	0,9	1112	6,92
Concentracio	Concentraciones en mg/L: Conductividad eléctrica en uS/cm: pH en unidades de pH																

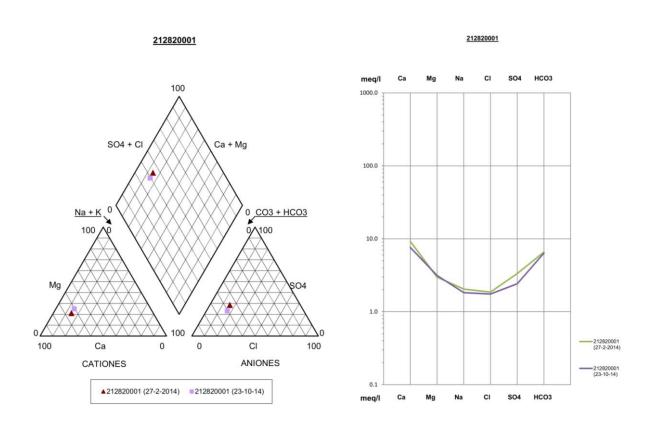
ACUÍFERO CAPTADO


Profundidad de la captación: 300 m

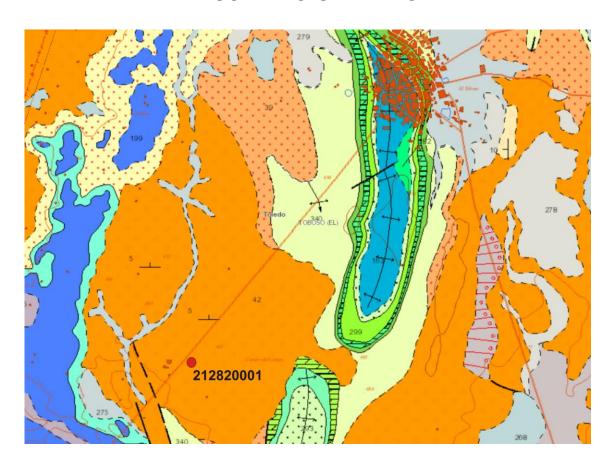
Profundidad del nivel piezométrico: 16,64 m (20/3/2015)

Columna litológica atravesada y acuífero captado: brechas y conglomerados calizos naranjas, a veces arcillas con fragmentos cuarcíticos del Mioceno.

Nº IGME: 212820001 (EL TOBOSO)



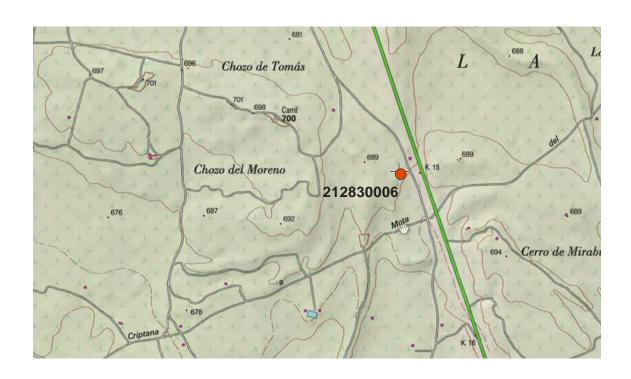
FACIES HIDROQUÍMICA



RESULTADOS ANALÍTICOS

Nº IGME	FECHA	Na	к	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
212820001	27/02/2014	47	4	184	36	66	160	400	0	116	0	0	0	25,2	3,2	1089	6,86
	23/10/2014	42	3	152	38	62	116	388	0	130	0	0	0	27.1	0,6	1089	7,52
Concentraci	ones en mg/L:	Cond	luct	ividad	elécti	ica e	n uS/c	m: pH e	n unida	des de	Ha						

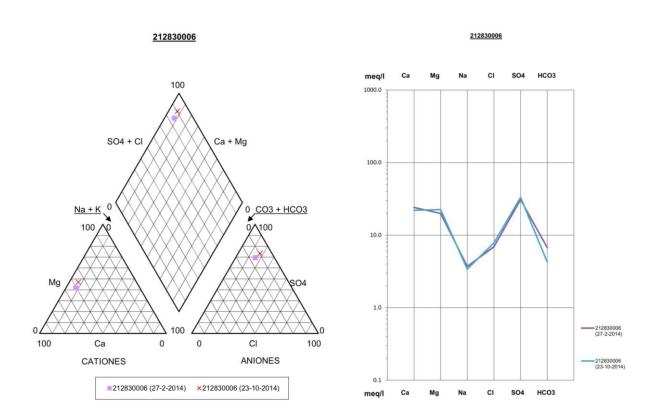
ACUÍFERO CAPTADO

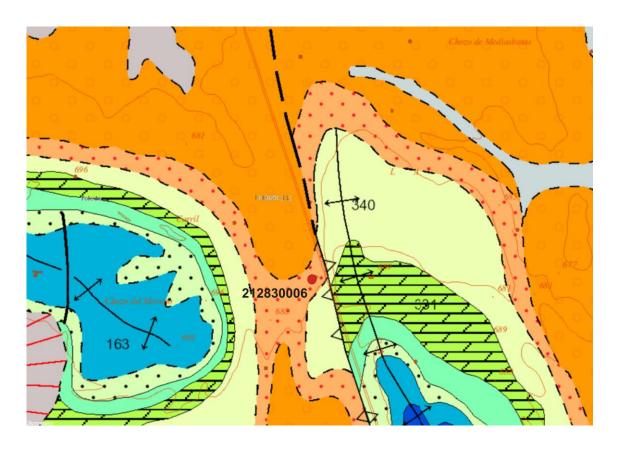

Profundidad de la captación: 320 m

Profundidad del nivel piezométrico: 15,86 m (20/3/2015)

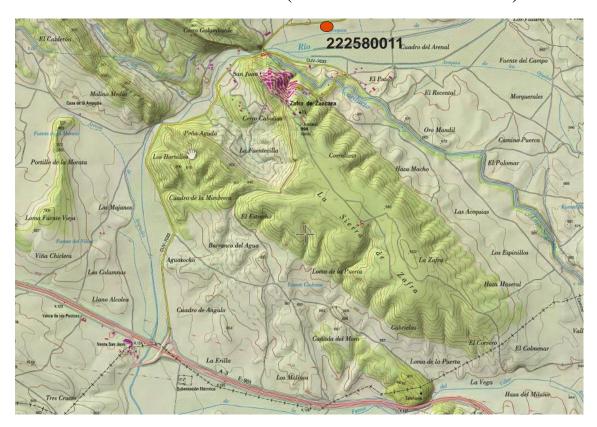
Columna litológica atravesada y acuífero captado: desde la superficie se atraviesa un conjunto de conglomerados cuarcíticos y poligénicos, areniscas grises y blancas y conglomerados cuarcíticos de edad Eoceno superior-Oligoceno inferior, para posteriormente atravesar materiales del tránsito Cretácico-Terciario, compuestos por margas, yesos, brechas calcáreas, calizas, areniscas y conglomerados. Se considera que los niveles carbonatados cretácicos constituyen el acuífero principal, si bien es posible que también aporten recursos hídricos los tramos permeables terciarios.

Nº IGME: 212830006 (EL TOBOSO)





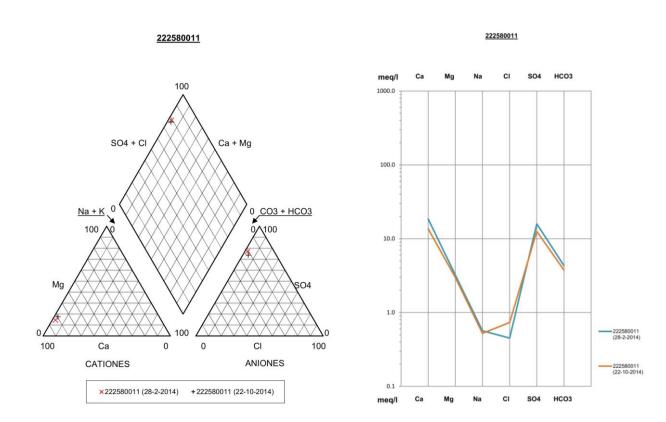
Nº IGME	FECHA	Na	к	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
212830006	27/02/2014	85	9	480	240	245	1480	410	0	56	0	0	0	15,2	1,0	4240	7,12
212830006	23/10/2014	78	9	440	272	278	1590	260	0	46	0,82	0,59	0	15,8	1,1	4380	7,57
Concentraci	ones en mg/L;	Cond	lucti	ividad	eléctr	ica en	μS/cm;	pH en u	nidade	es de pl	Н						

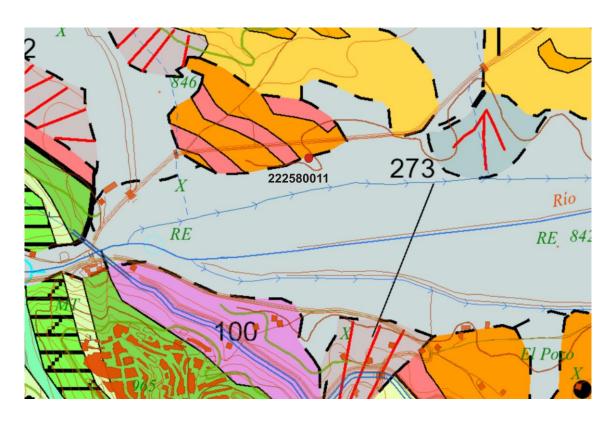

Profundidad de la captación: 290 m

Profundidad del nivel piezométrico: 35,55 m (16/3/2015)

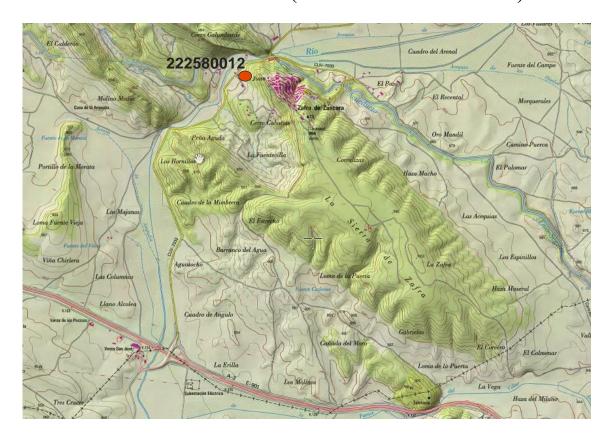
Columna litológica atravesada y acuífero captado: desde la superficie se atraviesa un paquete de areniscas grises y blancas y conglomerados cuarcíticos y poligénicos del Eoceno superior-Oligoceno inferior. Por debajo se sitúan los materiales de tránsito Terciario-Cretácico formados por margas, yesos, brechas calcáreas, calizas, areniscas y conglomerados. Se considera que los niveles carbonatados cretácicos constituyen el acuífero principal, si bien es posible que también aporten recursos hídricos los tramos permeables terciarios.

Nº IGME: 222580011 (ZAFRA DE ZÁNCARA)





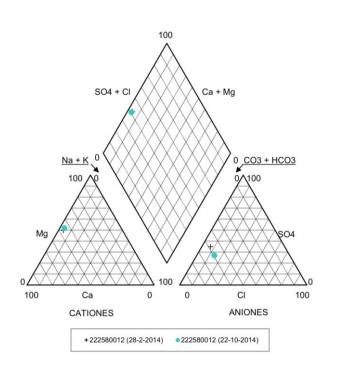
Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222580011	28/02/2014	13	2	370	39	16	762	264	0	32	0	0	0	13,9	1,0	1468	7,15
222580011	22/10/2014	12	3	272	36	26	604	230	0	27	0	0	0	14,6	0,7	1352	7,72
Concentraci	ones en mg/L;	Cond	lucti	ividad	elécti	ica e	n μS/c	m; pH ei	n unida	des de	рH						

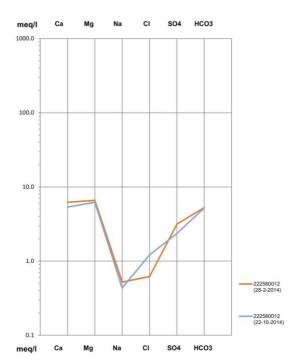

Profundidad de la captación: 10 m

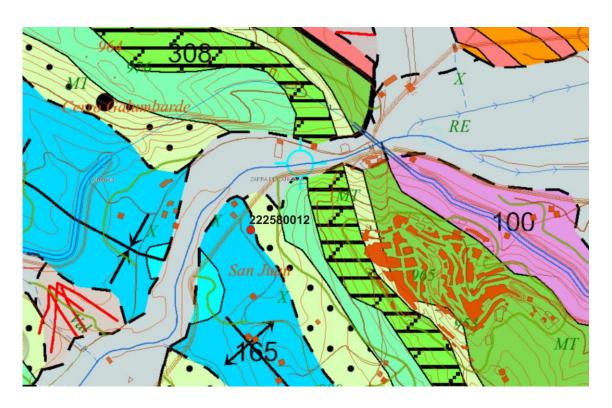
Profundidad del nivel piezométrico: 1,01 m (17/3/2015)

Columna litológica atravesada y acuífero captado: este pequeño pozo se encuentra excavado en terrenos del Pleistoceno superior-Holoceno compuestos por gravas y cantos poligénicos, arenas, limos y arcillas. Es probable, dado el contenido en sulfatos, que alcance los niveles de areniscas, arcillas y limos con margas y yesos del Oligoceno superior.

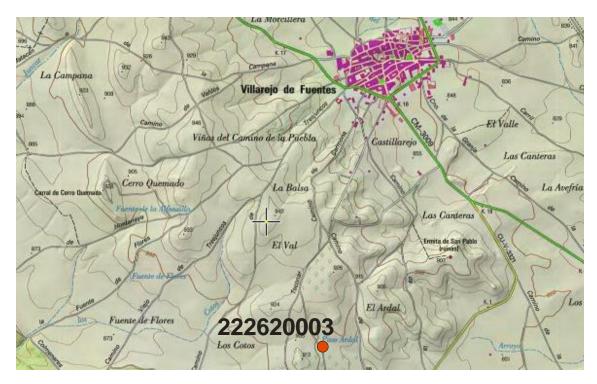
Nº IGME: 222580012 (ZAFRA DE ZÁNCARA)







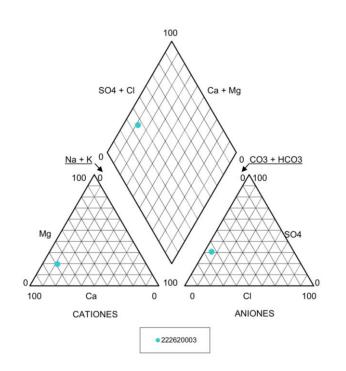
Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222500042	28/02/2014	12	7	124	80	22	151	320	0	240	0	0	0	13,8	1,0	1082	7,42
222580012	22/10/2014	10	9	107	75	43	113	316	0	200	0	0	0	14,7	1	969	7,87
Concentraci	ones en mg/L;	Cond	lucti	ividad	elécti	ica e	n μS/c	m; pH ei	n unida	ades de	рH						

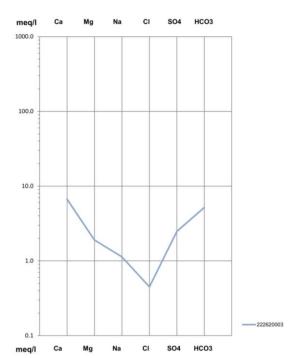

Profundidad de la captación: 15 m

Profundidad del nivel piezométrico: 5,77 m (17/3/2015)

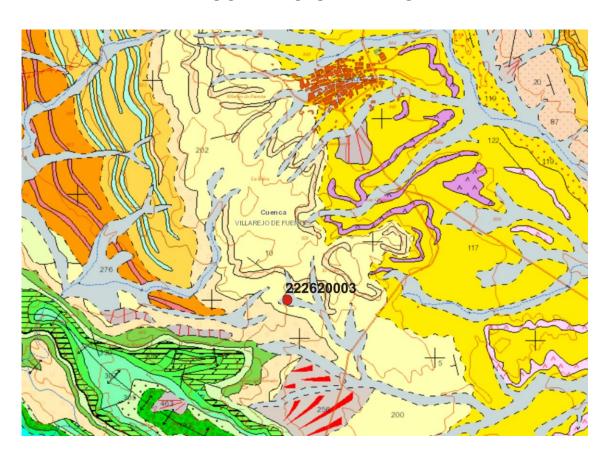
Columna litológica atravesada y acuífero captado: el pozo explota los recursos hídricos de la formación Utrillas (Albiense, Cretácicoinferior), compuesta por areniscas blanco amarillentas, conglomerados y arcillas.

Nº IGME: 222620003 (VILLAREJO DE FUENTES)

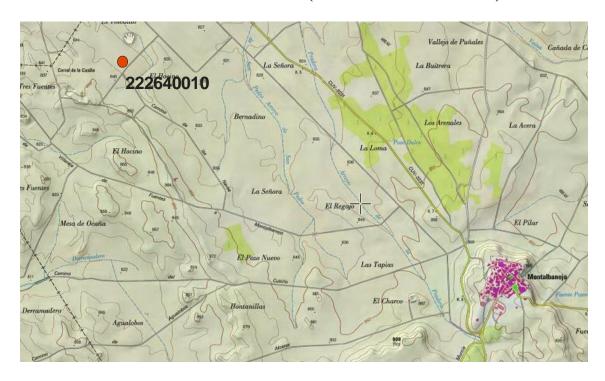




FACIES HIDROQUÍMICA DEL PUNTO 222620003 (febrero de 2014)


FACIES HIDROQUÍMICA DEL PUNTO 222620003 (febrero de 2014)

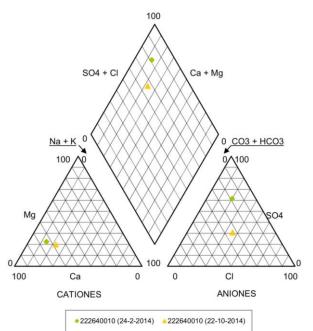
Nº IGME	FECHA	Na	K	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222620003	26/02/2014	26	1	134	23	16	119	316	0	70	0	0	0	23,8	0,9	744	7,26
Concentraci	620003 26/02/2014 26 1 134 23 16 119 316 0 0 0 0 0 0 23,8 0,9 744 7,26 1 1 1 1 1 1 1 1 1																

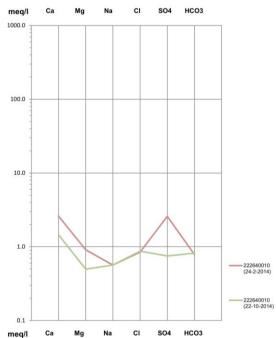

Profundidad de la captación: < 10 m

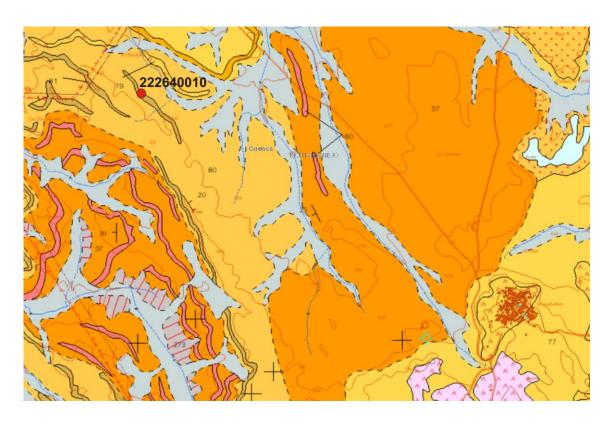
 $\textbf{Profundidad del nivel piezom\'etrico:}\ 7,45\ m\ (20/3/2015)$

Columna litológica atravesada y acuífero captado: el pozo explota los recursos hídricos de los materiales detríticos del Cuaternario (gravas y cantos poligénicos, arenas, limos y arcillas).

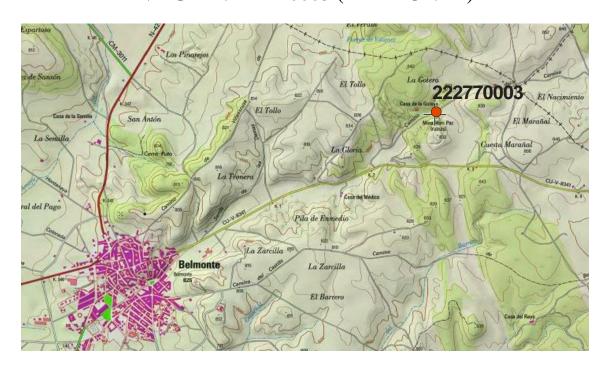
Nº IGME: 222640010 (MONTALBANEJO)







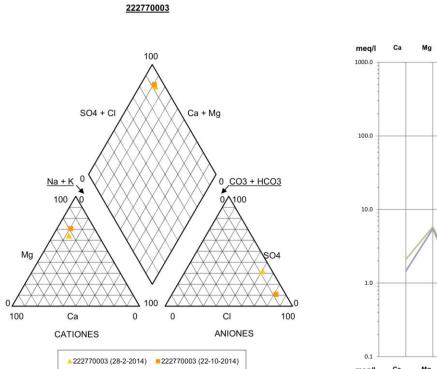
Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222640010	24/02/2014	13	2	52	11	30	124	48	0	0	0	0	0	0,1	1,1	431	7,17
222640010	22/10/2014	13	1	29	6	31	36	50	0	0	0	0	0	0,5	1,2	259	7,85
Concentraci	ones en mg/L;	Cond	lucti	ivida	d eléc	trica	en μS/	cm; pH	en unio	dades d	е рН						

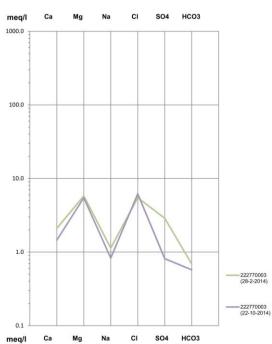

Profundidad de la captación: 40 m

Profundidad del nivel piezométrico: 14,68 m (18/3/2015)

Columna litológica atravesada y acuífero captado: el sondeo capta las aguas de los niveles de conglomerados, areniscas y arcillas del Oligoceno superior.

Nº IGME: 222770003 (BELMONTE)



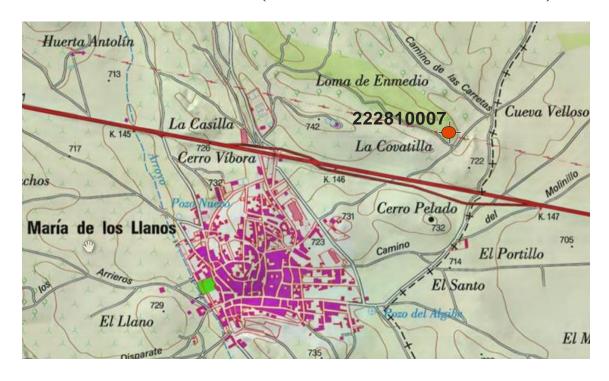



222770003

RESULTADOS ANALÍTICOS

Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222770003	28/02/2014	26	3	42	70	195	138	42	0	0	0	0	0	0,2	3,0	857	7,20
222770003	22/10/2014	19	3	29	66	219	39	35	0	0	0	0	0	0,3	2,2	813	7,76
		_				_	/										

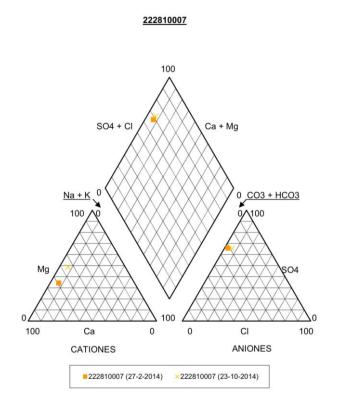
Concentraciones en mg/L; Conductividad eléctrica en µS/cm; pH en unidades de pH

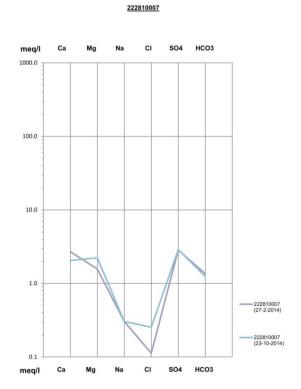

Profundidad de la captación: 100 m

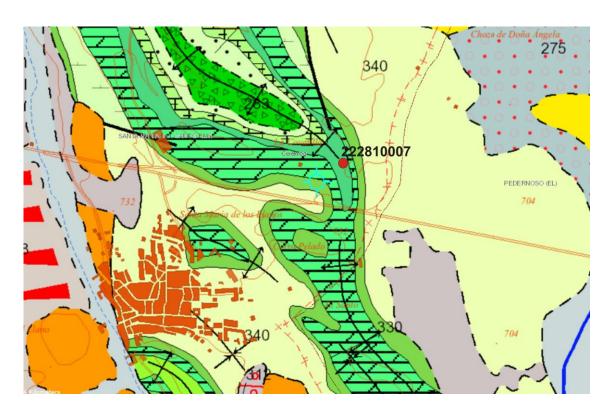
Profundidad del nivel piezométrico: 2,32 m (17/3/2015)

Columna litológica atravesada y acuífero captado: esta perforación atraviesa las areniscas blanco amarillentas, conglomerados y arcillas de la Formación Utrillas (Albiense).

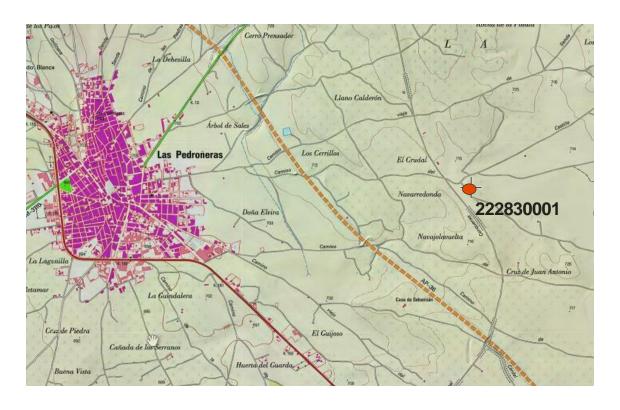
Nº IGME: 222810007 (SANTA Mª DE LOS LLANOS)







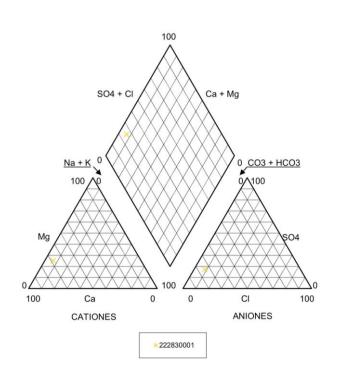
Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222810007	27/02/2014	7	1	54	19	4	136	83	0	8	0	0	0	0,9	9,2	445	7,02
222810007	23/10/2014	7	1	41	27	9	138	76	0	0	0	0	0	0,2	7,2	423	7,66
Concentracio	ones en mg/L:	Cond	lucti	ivida	d eléc	trica	en uS	/cm: pH	en uni	dades	de pH						

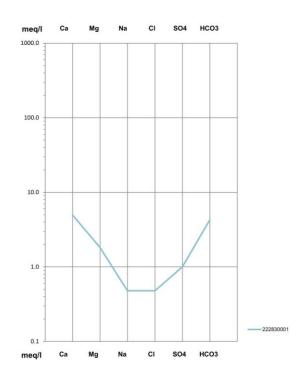

Profundidad de la captación: 235 m

Profundidad del nivel piezométrico: 49,6 m (17/3/2015)

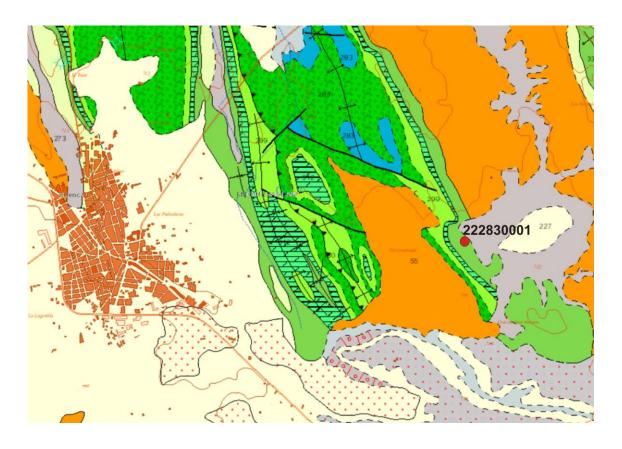
Columna litológica atravesada y acuífero captado: esta perforación queda emboquillada en el eje de un anticlinal de tal forma que atraviesa los materiales carbonatados y detríticos del Cretácico inferior, desde el Cenomaniense hasta el Hauteriviense, compuestos por dolomías calizas, margas, areniscas, conglomerados y arcillas, de las formaciones Villa de Ves, Chera, Alatoz y Utrillas, hasta alcanzar los paquetes jurásicos, que constituyen el acuífero principal, compuestos por las calizas con sílex, calizas oolíticas y dolomías del Grupo Chelva.

Nº IGME: 222830001 (LAS PEDROÑERAS)

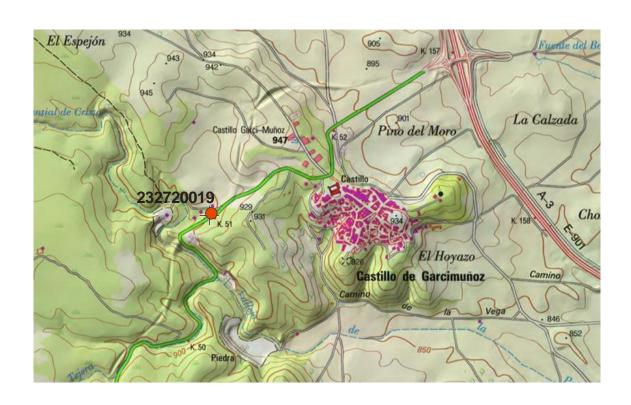




FACIES HIDROQUÍMICA DEL PUNTO 222830001 (febrero de 2014)


FACIES HIDROQUÍMICA DEL PUNTO 222830001 (febrero de 2014)

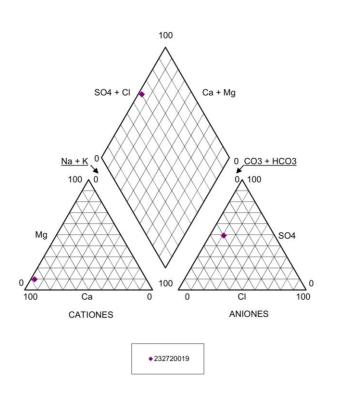
Nº IGME	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
222830001	28/02/2014	11	0	99	22	17	48	260	0	74	0	0	0	12,2	0,6	607	7,17
Concentraci	ones en mg/L:	Cond	lucti	ividad	d eléct	trica	en uS/	cm: pH	en unio	lades d	le pH						

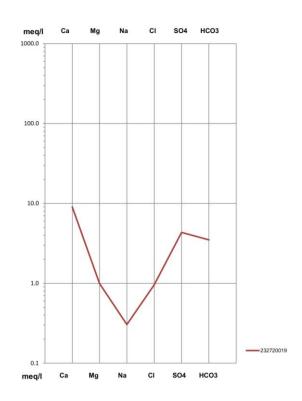

Profundidad de la captación: 259 m

Profundidad del nivel piezométrico: 34,07 m (18/3/2015)

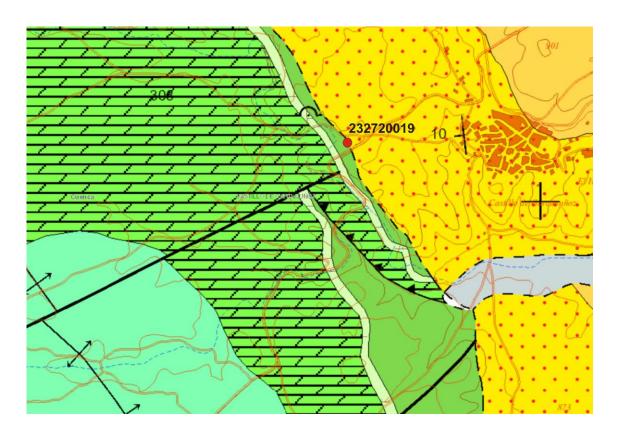
Columna litológica atravesada y acuífero captado: el sondeo se encuentra emboquillado en las brechas, carniolas, dolomías, margas y caliza del Turoniense-Campaniense (Cretácico superior. Formaciones Cuenca, pantano de la Tranquera y/o Utiel). Posteriormente atraviesa el resto de serie Cretácica, compuesta por los paquetes carbonatados y detríticos de las formaciones Ciudad Encantada, Casa Medina, Villa de Ves, Alatoz, Chera y Utrillas, para alcanzar los materiales jurásicos del Grupo Chelva. Se considera que las aguas de este punto de muestreo proceden tanto del acuífero Jurásico como de los niveles permeables cretácicos.

Nº IGME: 232720019 (CASTILLO DE GARCIMUÑOZ)

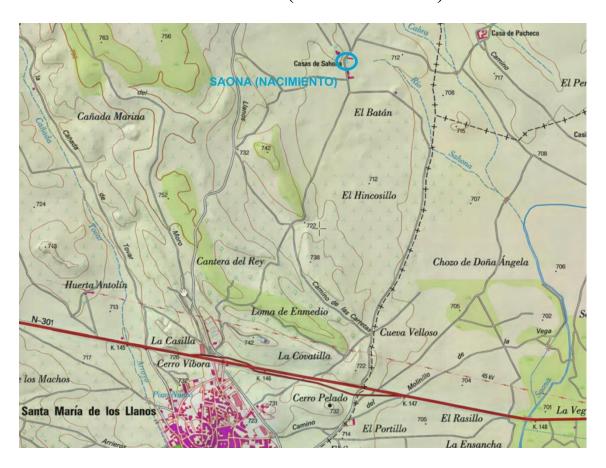




FACIES HIDROQUÍMICA DEL PUNTO 232720019 (octubreo de 2014)


FACIES HIDROQUÍMICA DEL PUNTO 232720019 (octubre de 2014)

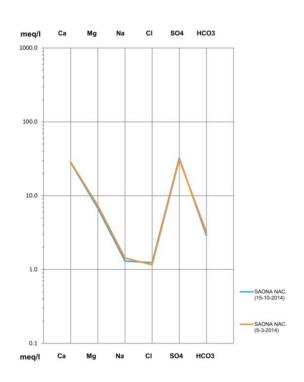
Nº IGME	FECHA	Na	K	Ca	Mg	C	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
232720019	22/10/2014	7	0	180	12	34	208	213	0	70	0	0	0	15,5	0,6	882	7,72
Concentraci	2/20019 22/10/2014 7 0 180 12 34 208 213 0 70 0 0 0 15,5 0,6 882 7,72 ncentraciones en mg/L: Conductividad eléctrica en uS/cm: pH en unidades de pH																


Profundidad de la captación: 194 m

Profundidad del nivel piezométrico: 81,33 m (18/3/2015)

Columna litológica atravesada y acuífero captado: el sondeo se encuentra emboquillado en materiales del Cretácico superior (brechas, carniolas, dolomías, margas y caliza de las Formaciones Cuenca, Pantano de la Tranquera y/o Utiel). Por debajo se sitúan los niveles de dolomías, calizas, margas y areniscas del resto de la serie cretácica (formaciones Ciudad Encantada, Casa Medina, Villa de Ves, Alatoz, Chera y Utrillas). Dada la profundidad de la perforación se considera que las aguas explotadas pertenecen a los niveles permeables del Cretácico inferior y medio.

RÍO SAONA (NACIMIENTO)

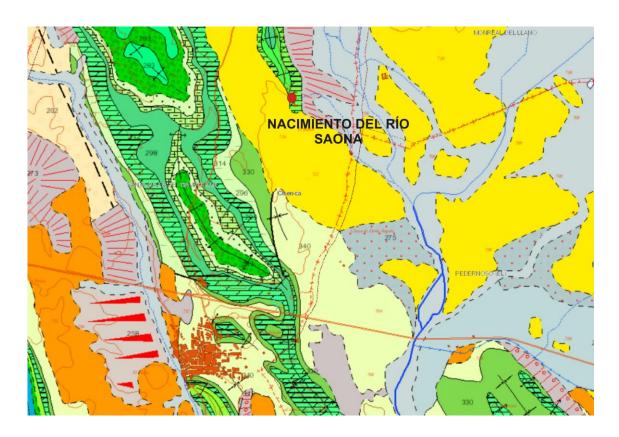


FACIES HIDROQUÍMICA

NACIMIENTO DEL RÍO SAONA

SO4 + CI Ca + Mg Na + K 100 0 CO3 + HCO3 0 100 Ca 100 CATIONES ANIONES *SAONA NAC. (15-10-2014) +SAONA NAC. (5-3-2014)

NACIMIENTO DEL RÍO SAONA



RESULTADOS ANALÍTICOS

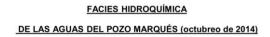
NOMBRE	FECHA	Na	K	Са	Mg	C	SO4	нсоз	соз	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
Nacimiento	05/03/2014	33	2	570	89	41	1476	195	0	40	0	0	0	47,9	0,5	3420	6,62
Saona	15/10/2014	30	2	560	82	44	1550	177	0	38	0	0	0	19,6	0,5	3420	7,63
Concentracion	Concentraciones en mg/L; Conductividad eléctrica en uS/cm; pH en unidades de pH																

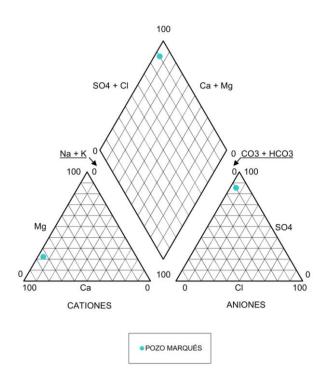
ACUÍFERO CAPTADO

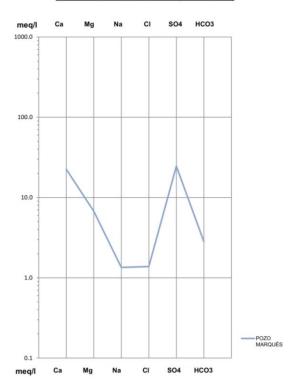
Manantial: cota de surgencia 700 m s.n.m.

Acuífero/s drenado/s: este manantial aflora en el contacto entre los materiales cretácicos del Turoniense, compuestos por dolomías, calizas masivas y margas y las arcillas, limos rojos y arenas con niveles de conglomerados, yesos y margas del Mioceno. Pese a que este manantial drena principalmente los niveles permeables cretácicos, los elevados contenidos en sulfatos indican el lavado de materiales yesíferos, probablemente de edad miocena.

POZO MARQUÉS

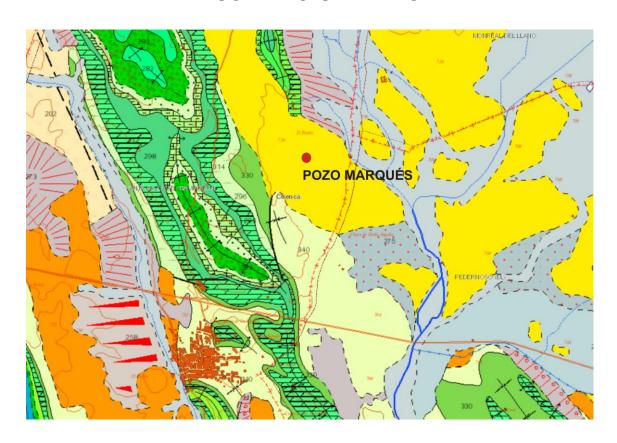






FACIES HIDROQUÍMICA

FACIES HIDROQUÍMICA DE LAS AGUAS DEL POZO MARQUÉS (octubre de 2014)



RESULTADOS ANALÍTICOS

Pozo del 15/10/2014 21 2 450 92 49 1190 173 0 20 0 0 0 212 05	NOMBRE	FECHA	Na	К	Ca	Mg	CI	SO4	нсоз	CO3	NO3	NO2	NH4	PO4	SiO2	Oxidabilidad al MnO4K	Conductividad	рН
Marqués 13/10/2014 31 2 430 82 49 1160 173 0 39 0 0 0 21,3 0,3 3000		15/10/2014	31	2	450	82	49	1180	173	0	39	0	0	0	21,3	0,5	3050	7,68

ACUÍFERO CAPTADO

Profundidad de la captación: ?

Profundidad del nivel piezométrico: ?

Columna litológica atravesada y acuífero captado: el sondeo se encuentra emboquillado en materiales del Mioceno formados por arcillas, limos rojos, arenas y areniscas. Con niveles de conglomerados, yesos y margas. Probablemente por debajo alcance materiales carbonatados del Cretácico. Como no se cuenta con datos de la profundidad de la captación ni del nivel del agua en la misma, pero atendiendo a su ubicación y a la similitud entre sus aguas y las del manantial de Saona se deduce que drena los niveles permeables tanto de la formación miocena como del Cretácico.

ANEXO II: RESULTADOS ANALÍTICOS - FEBRERO DE 2014

Informe N°	14/0083
Referencia de Laboratorio	4814-1
Referencia de envio (Ident. de la muestra	IGME-1
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

			1000 10000000 10000 1000							
Nombre Muestra	Nº Regi 212640		F. de toma 24/02/2014		utos	Profundid	lad		minación 3/2014	Num. Muest
Físico-Químicos (*):				N	layorita	arios (mg/l	_):			
Oxidab. al MnO4K (mg/L)		Na 14	K 9	Ca 288	Mg 37	CI 71		SO ₄ 588	HCO ₃	
Conductividad 20° (µS/cm) 1216		0 0	0 3 N (O ₃	NO2 0,00	NH4 0,00		PO4 0,00	SiO2 13,5	
pH (Unid. pH) 7,51					Meta	les (µg/L):				
R. S. 180° (mg/L) 904,4	Ag	Al	As 2,15	Bor	o E	Ba Be	(Cd < 0,4	Co	Cr 0,7
R. S. 260° (mg/L)	Cu 0,53	Fe < 30	Hg < 1	Li	N	In M o	0	Ni	Pb < 0,4	Sb
		Se	Sr	Та	Th	TI	U	9	V Zn	
	•	< 1							31.	,3
La Jefe de Laboratorio	:		RECIBI	DO D.A	A.S.			V	, B ₀	
	>									

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

OBSERVACIONES:

NO SE APRECIAN SULFUROS EN NINGUNA MUESTRA

Informe No

		Referencia de	Laborato	rio		4814	1-1			
		Referencia de	envio (Ide	ent. de la	muestra	a IGM	E-1			
		Fecha de entr	ega a Lab	oratorio		04/0	3/2014			
		Proyecto Nº				3530	00310			
De	Laboratorio Ag	uas a Direcciór	de Aguas	Subterr	áneas					
IN	FORME DE	DETERMINA	ACIONE	S REA	LIZAD	AS				
No	ombre Muestra		egistro 40004	F. de tom 24/02/20		inutos	Profundida		rminación 03/2014	Num. Muestra 1
				Esp	ecíficos	(*):				
	Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros	(mg/L)	Fenole	es (mg/L)	Deterge	entes (mg/L	.)	CO2 (mg/L)
N	Materias en suspei	nsión (mg/L)	Dureza	(mg/L)	COT (r	mg/L)	CT (mg/L)	IC (mg/	L) Br	omato (mg/L)
E	Bromuro (mg/L)	N org (mg/L)	Cloruro	o cromato	gr. iónica	ı (mg/L)	CI/Br	Color	(UC) T	urbidez (UNF)
1	Nitrógeno Total									
				Isótop	oos (Bq/	/L):				
		Radalfa	Erradalfa	a R	adbeta	Erra	dbeta	Titrio		
	La Jefe de La	aboratorio:		RECI	BIDO	D.A.S.			V° B°	

14/0083

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

OBSERVACIONES:

NO SE APRECIAN SULFUROS EN NINGUNA MUESTRA

Informe N°	14/0083
Referencia de Laboratorio	4814-2
Referencia de envio (Ident. de la muestra	IGME-2
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regist 21277000		F. de toma 27/02/2014		utos	Profund	didad		minación 3/2014	Num. Muestra 2
Físico-Químicos (*):				N	/layorita	arios (m	g/L):			
Oxidab. al MnO4K (mg/L)		Na	K	Ca	Mg	CI		SO ₄	HCO 3	
0,9		36	2	186	46	146		95	416	
Conductividad 20° (µS/cm)		CC)3 NC) 3	NO2	NH4	1	PO4	SiO2	
1112		0	66		0,00	0,00)	0,00	20,1	
pH (Unid. pH) 6,92		Metales (μg/L):								
D C 4000 (m = 11)	Ag	ΑI	As	Bor	о Е	la	Be	Cd	Co	Cr
R. S. 180° (mg/L) 795,8			0,14					< 0,2		0,18
D. C. 0000 (//)	Cu	Fe	Hg	Li	N	¶n	Мо	Ni	Pb	Sb
R. S. 260° (mg/L)	< 0,2	528	< 0,5			17,1			0,21	
	Se	Ŀ	Sr	Та	Th	TI		U	V Zn	
	1,8	36							1,9	7
La Jefe de Laboratorio	:		RECIBIE	00 D.	A.S.			V	° B°	
								••••••	•••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0083
Referencia de Laboratorio	4814-2
Referencia de envio (Ident. de la muestra	IGME-2
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra			de toma /02/2014	Minutos	Profundida	MA 15 5 1	Гегтіпасіо́г 7/03/2014	Num. Muestra 2
			Específic	os (*):				
Fluoruro (mg/L)	CN (mg/L)	Sulfuros (mg	/L) Fen	oles (mg/L)	Deterge	entes (mg	/L)	CO2 (mg/L)
<0,5	<0,01							
Materias en suspen	sión (mg/L)	Dureza (mg	/L) CO	T (mg/L)	CT (mg/L)	IC (m	g/L) Br	omato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro cro	omatogr. ión	ica (mg/L)	CI/Br	Colo	r (UC)	「urbidez (UNF)
Nitrógeno Total								
			lsótopos (E	3q/L):				
	Radalfa	Erradalfa	Radbet	a Erra	adbeta	Titrio		
La Jefe de La	boratorio:		RECIBIDO	D.A.S.			V° B°	

^(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-3
Referencia de envio (Ident. de la muestra	IGME-3
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Reg 21282		F. de 27/02	toma /2014	Minu	itos	Profu	ındidad		ermina 7/03/20		Num. Muestr
Físico-Químicos (*):					М	ayorit	arios (ı	mg/L):				
Oxidab. al MnO4K (mg/L) 3,2		Na 47		к 4		Mg 36	CI 66		SO₄ 160		HCO 3	
Conductividad 20° (µS/cm) 1089		(003	NO :	3	NO2 0,00		H4 ,00	PO4 0,00		i O2 5,2	
pH (Unid. pH) 6,86				Metales (μg/L								
R. S. 180° (mg/L) 781,6	Ag	Al		As),96	Boro	Е	За	Be	Cd < (Со	Cr 0,36
R. S. 260° (mg/L)	Cu 0,25	F 15		Hg),5	Li	ħ	/in 1,07	Mo	Ni		Pb 0,46	Sb
		Se 3,12	Sr	Т	a	Th	TI		U	V	Z n 40,	
La Jefe de Laboratorio	:		RE	CIBIDO	D.A	.S.			3	V° B°		

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

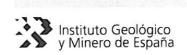
Informe Nº	14/0083
Referencia de Laboratorio	4814-3
Referencia de envio (Ident. de la muestra	IGME-3
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

			F. de toma Minutos 27/02/2014		Profundida	17/03/20		
				Especí	ficos (*):			
Fluor	ruro (mg/L)	CN (mg/L) <0,01	Sulfuros (m	g/L) F	enoles (mg/L)	Deterge	ntes (mg/L)	CO2 (mg/L)
Mater	ias en susper	nsión (mg/L)	Dureza (m	g/L) C	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Brom	uro (mg/L)	N org (mg/L)	Cloruro d	romatogr. i	ónica (mg/L)	CI/Br	Color (UC)	Turbidez (UNF)
Nitróg	geno Total							
				Isótopos	(Bq/L):			
		Radalfa	Erradalfa	Radb	eta Erra	adbeta	Titrio	
L	.a Jefe de La	aboratorio:		RECIBIE	00 D.A.S.		V° B	0

^(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-4
Referencia de envio (Ident. de la muestra	IGME-4
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N ^o	35300310


INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regist 21283000		F. de ton 27/02/20		Minutos	P	rofundida		Termi 7/03/	inación 2014	Num. Muestra 4
Físico-Químicos (*):				·	Mayo	oritari	os (mg/L)):			
Oxidab. al MnO4K (mg/L)		Na	к	Ca		70)	CI	SO ₄		HCO 3	
1,0		85	9	480	24	10	245	1480)	410	
Conductividad 20° (µS/cm)		co		NO ₃	NO	02	NH4	PO4		SiO2	
4240		0	5	56	0,0	00	0,00	0,00		15,2	
pH (Unid. pH) 7,12		(1700)			IV	letales	s (µg/L):				
-	Ag	Al	As	E	Boro	Ва	Ве	С	d	Co	Cr
R. S. 180° (mg/L) 3061,2			0,4	1				<	8,0		0,43
	Cu	Fe	Hg		Li	Mn	Мо	N	li	Pb	Sb
R. S. 260° (mg/L)	< 0,8	2704	< 2			42	.,4			< 0,8	
	Se		Sr	Та	TH	1	TI	U	٧	Zn	
	2,2	24								21,	4
La Jefe de Laboratorio:			RECI	BIDO	D.A.S.			2	V°	B°	
									•••••		

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº

V° B°

	Referencia de	Laboratorio	4	814-4		
	Referencia de	envio (Ident. de I	a muestra	GME-4		
	Fecha de entr	ega a Laboratorio	0	4/03/2014		
	Proyecto Nº		3	5300310		
De Laboratorio Ag						
Nombre Muestra		egistro F. de to 27/02/2		Profundida	17/03/20	
		Es	pecíficos (*):			
Fluoruro (mg/L)	CN (mg/L) <0,01	Sulfuros (mg/L)	Fenoles (mg/	L) Deterge	entes (mg/L)	CO2 (mg/L)
Materias en suspe	nsión (mg/L)	Dureza (mg/L)	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro cromat	ogr. iónica (mg/L	.) CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total						
		Isóto	opos (Bq/L):			
	Radalfa	Erradalfa	Radbeta E	rradbeta	Titrio	

14/0083

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

RECIBIDO D.A.S.

OBSERVACIONES:

La Jefe de Laboratorio:

Informe N°	14/0083
Referencia de Laboratorio	4814-5
Referencia de envio (Ident. de la muestra	IGME-5
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registr 22258001		F. de toma 28/02/2014	Min	utos	Profur	ndidad		minación 03/2014	Num. Muestr
Físico-Químicos (*):				N	layorita	arios (m	ng/L):			
Oxidab. al MnO4K (mg/L)		Na 13	K 2	Ca 370	Mg 39	C 16		SO₄ 762	нсо _з	
Conductividad 20° (µS/cm)		CO	3 NC)3	NO2 0,00	NF 0,0		PO4 0,00	SiO2 13,9	
pH (Unid. pH) 7,15		Metales (μg/L):								
R. S. 180° (mg/L) 1052,2	Ag	AI	As 1,36	Boro) Е	Ba	Be	Cd < 0,4	Со	Cr 0,63
R. S. 260° (mg/L)	Cu < 0,4	Fe < 30	Hg < 1	Li	N	In 1,36	Мо	Ni	Pb 1,09	Sb
	Se < 1		Sr	Та	Th	TI	1	U	V Zn	
La Jefe de Laboratorio	:		RECIBIE	00 D.A	S.			V	° В°	
									••••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-5
Referencia de envio (Ident. de la muestra	IGME-5
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N⁰	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra		egistro F. de to 28/02/2		Profundidad	F. Termina 17/03/201	
		Es	pecíficos (*):			
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg/L)	Fenoles (mg/L)	Detergen	tes (mg/L)	CO2 (mg/L)
Materias en suspei	nsión (mg/L)	Dureza (mg/L)	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro croma	togr. iónica (mg/L)	CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total						
		Isót	opos (Bq/L):			
	Radalfa	Erradalfa	Radbeta Erra	adbeta T	itrio	
La Jefe de La	aboratorio:	RE	CIBIDO D.A.S.		V° B°)

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-6
Referencia de envio (Ident. de la muestra	IGME-6
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Re 22258		F. de toma 28/02/201		ıtos	Profundida		ninación 3/2014	Num. Muest
Físico-Químicos (*):				N	layorita	rios (mg/L)):		
Oxidab. al MnO4K (mg/L)		Na 12	K 7	Ca 124	Mg 80	CI 22	SO ₄	HCO ₃	
Conductividad 20° (µS/cm) 1082		0	03 N 24	O ₃	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 13,8	
pH (Unid. pH) 7,42					Metal	les (µg/L):			
R. S. 180° (mg/L) 793.6	Ag	Al	As 0,34	Boro	о Ва	a Be	Cd < 0,2	Со	Cr 0,3
R. S. 260° (mg/L)	Cu 0,5	Fe < 15	Hg < 0,5	Li	M	n M o < 0,5	Ni	Pb < 0,2	Sb
		Se 0.62	Sr	Та	Th	ΤI	U V	/ Zr	
La Jefe de Laboratorio):		RECIBI	DO D.A	\.S.		V°	B°	
Mu	>						••••••	••••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (µS/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-6
Referencia de envio (Ident. de la muestra	IGME-6
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310
D	

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra					F. Terminae 17/03/201	
		Es	pecíficos (*):			
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg/L)	Fenoles (mg/L)	Detergen	tes (mg/L)	CO2 (mg/L)
Materias en suspen	sión (mg/L)	Dureza (mg/L)	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro cromat	ogr. iónica (mg/L)	CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total						
		Isóto	opos (Bq/L):			
	Radalfa	Erradalfa	Radbeta Erra	adbeta T	itrio	
La Jefe de La	boratorio:	REC	CIBIDO D.A.S.		V° B°	

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-7
Referencia de envio (Ident. de la muestra	IGME-7
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regi 222620		F. de t		Min	utos	Prof	undida	d F		ninación 3/2014	Num. Muestr
Físico-Químicos (*):			Mayorit				tarios (mg/L):					
Oxidab. al MnO4K (mg/L)		Na 26	ĸ		Ca	Mg		CI	so	, in	нсо 3	
0,9		20	1	l	34	23	ļ	6	119	,	316	
Conductividad 20° (µS/cm)		C	D 3	NO ₃		NO2	N	lH4	PO	4	SiO2	
744		0		70		0,00	C	,00	0,00	0	23,8	
pH (Unid. pH) 7,26						Met	ales (µ	g/L):				
D C 4000 (/1)	Ag	AI	A	ls	Boro)	Ва	Ве	,	Cd	Co	Cr
R. S. 180° (mg/L) 554,4			2	,39					3	< 0,2		0,32
D. O. 0000 (Cu	Fe	F	łg	Li		Mn	Мо		Ni	Pb	Sb
R. S. 260° (mg/L)	0,46	< 1:	5 < 0	,5			1,01				< 0,2	
		Se	Sr	Та		Th	TI		U	V	/ Zn	
	2	2,52									37.	.7
La Jefe de Laboratorio:			REC	CIBIDO	D.A	A.S.				V°	B°	
	>									•••••	••••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0083
Referencia de Laboratorio	4814-7
Referencia de envio (Ident. de la muestra	IGME-7
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	N° Registro 222620003		e toma Minu 02/2014	utos Profundi		rminación Num. 03/2014		
			Específicos (*):				
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg/L	.) Fenoles ((mg/L) Deter	gentes (mg/L)) CO2 (mg	/L)	
Materias en susper	nsión (mg/L)	Dureza (mg/L	.) COT (mg	/L) CT (mg/L) IC (mg/l	_) Bromato (m	g/L)	
Bromuro (mg/L)	N org (mg/L)	Cloruro cron	ruro cromatogr. iónica (mg/L)		r Color (UC) Turbidez (UNF)	
Nitrógeno Total								
		ls	ótopos (Bq/L)	:				
	Radalfa	Erradalfa	Radbeta	Erradbeta	Titrio			
La Jefe de La	aboratorio:	F	RECIBIDO D.	A.S.		V° B°		
					•••••			

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083			
Referencia de Laboratorio	4814-8			
Referencia de envio (Ident. de la muestra	IGME-8			
Fecha de entrega a Laboratorio	04/03/2014			
Proyecto Nº	35300310			

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regist 22264001		F. de toma 24/02/2014		utos	Profundida	-	ninación 3/2014	Num. Mues 8
Físico-Químicos (*):				Ŋ	layorita	rios (mg/L)	:		
Oxidab. al MnO4K (mg/L)		Na 13	K 2	Ca 52	M g 11	CI 30	SO ₄ 124	HCO ₃	
Conductividad 20° (μS/cm) 431		CO 3	8 N O) ₃	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 0,1	
pH (Unid. pH) 7,17					Metal	es (µg/L):			
R. S. 180° (mg/L) 336	Ag	Al	As 0,06	Bor	о Ва	а Ве	Cd < 0,2	Co	Cr < 0,05
R. S. 260° (mg/L)	Cu < 0,2	Fe 16,2	Hg < 0,5	Li		n M o 178	Ni	Pb < 0,2	Sb
	Se	0,5	Sr	Та	Th	ΤI	U V	/ Zn 2,4	
La Jefe de Laboratorio:			RECIBII	00 D.	A.S.		V°	B°	
	•							••••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0083
Referencia de Laboratorio	4814-8
Referencia de envio (Ident. de la muestra	IGME-8
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra		Registro F. de toma Minutos 640010 24/02/2014			Profundida	d F. Termina 17/03/20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		100	Espec	cíficos (*):			
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg/L)	Fenoles (mg/L)	Deterge	ntes (mg/L)	CO2 (mg/L)
Materias en suspen	ısión (mg/L)	Dureza (mg/L)	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro	uro cromatogr. iónica (mg/L)		CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total							
			Isótopo	s (Bq/L):			
	Radalfa	Erradalfa	Rac	lbeta Erra	adbeta	Titrio	
La Jefe de La	aboratorio:		RECIB	DO D.A.S.		V° E	30

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-9
Referencia de envio (Ident. de la muestra	IGME-9
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registr 22277000		F. de toma 28/02/201		inutos	Pro	fundidad	-	erminación 7/03/2014	Num. Muestr 9
Físico-Químicos (*):					Mayori	tarios	(mg/L)	:		
Oxidab. al MnO4K (mg/L)		Na 26	К 3	Ca 42	Mg 70		CI 195	SO ₄	нсо ; 42	3
Conductividad 20° (µS/cm) 857		CO	0 N	IO ₃	NO2 0,00		NH4 0,00	PO4 0,00	SiO2 0,2	
pH (Unid. pH) 7,20					Met	tales (μg/L):			•
R. S. 180° (mg/L) 617,6	Ag	Al	As 0,08		oro	Ва	Be	Cd < (Co	C r < 0,05
R. S. 260° (mg/L)	Cu < 0,2	Fe < 15	Hg < 0,5	l	Li	Mn 4,69	Мо	Ni	Pb < 0,2	Sb
	Se < (0,5	Sr	Та	Th	TI		U	v z	n ,35
La Jefe de Laboratorio	»:		RECIB	IDO [D.A.S.				V° B°	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0083
Referencia de Laboratorio	4814-9
Referencia de envio (Ident. de la muestra	IGME-9
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra		egistro F. de tom 28/02/20		Minutos	Profundida	d F. Termina 17/03/20	
			Especí	ficos (*):			
Fluoruro (mg/L)	CN (mg/L) <0,01	Sulfuros (m	g/L) F	enoles (mg/L)	Deterge	ntes (mg/L)	CO2 (mg/L)
Materias en susper	nsión (mg/L)	Dureza (m	g/L) (COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro c	romatogr.	iónica (mg/L)	CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total							
			Isótopos	s (Bq/L):			
	Radalfa	Erradalfa	Radi	oeta Erra	adbeta	Titrio	
La Jefe de La	aboratorio:		RECIBIE	OO D.A.S.		V° B	0

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083		
Referencia de Laboratorio	4814-10		
Referencia de envio (Ident. de la muestra	IGME-10		
Fecha de entrega a Laboratorio	04/03/2014		
Proyecto Nº	35300310		

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regist 22281000		F. de toma 27/02/2014		utos	Profundida		rminación 03/2014	Num. Muest
Físico-Químicos (*):				N	layorita	rios (mg/L	.):		
Oxidab. al MnO4K (mg/L) 9.2		Na 7	K	Ca 54	Mg 19	CI	SO ₄	нсо _з	
9,2		•	, 1 ,	54	19	4	130	03	
Conductividad 20° (µS/cm)		CO3	N	03	NO2	NH4	PO4	SiO2	
445		0	8		0,00	0,00	0,00	0,9	
pH (Unid. pH) 7,02					Metal	les (µg/L):			
D 0 4000 / U.	Ag	Al	As	Bor	о В	a Be	Cd	Co	Cr
R. S. 180° (mg/L) 322,4			0,1				< 0,2	2	< 0,05
	Cu	Fe	Hg	Li	М	n Mo	Ni Ni	Pb	Sb
R. S. 260° (mg/L)	17,8	61,7	< 0,5			75,5		< 0,2	
	Se	E	Sr	Та	Th	TI	Ū	V Zn	
	< (0,5						6,2	27
La Jefe de Laboratorio			RECIBI	DO D./	A.S.		v	/° B°	
1 / M	>								

(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-10
Referencia de envio (Ident. de la muestra	IGME-10
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N ^o	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra		3	de toma Mi /02/2014	nutos Prof	ununuu	. Terminación 17/03/2014	Num. Muestra 10
			Específicos	(*):			
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg	/L) Fenole	s (mg/L) D	etergentes (m	ıg/L)	CO2 (mg/L)
Materias en susper	nsión (mg/L)	Dureza (mg	/L) COT (n	ng/L) CT (n	ng/L) IC (r	mg/L) Bro	omato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro cro	omatogr. iónica	(mg/L)	CI/Br Col	lor (UC) T	urbidez (UNF)
Nitrógeno Total							
			lsótopos (Bq/	L):			
	Radalfa	Erradalfa	Radbeta	Erradbeta	Titrio		
La Jefe de La	aboratorio:		RECIBIDO I	D.A.S.		V° B°	

^(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0083
Referencia de Laboratorio	4814-11
Referencia de envio (Ident. de la muestra	IGME-11
Fecha de entrega a Laboratorio	04/03/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registre 222830001		F. de tom 28/02/20		Minu	itos	Pro	fundida	d		rminación)3/2014	N	um. Muestr
Físico-Químicos (*):					M	ayorit	arios	(mg/L)	:				
Oxidab. al MnO4K (mg/L)		Na	к	С		Mg		CI		iO ₄	нсо	3	-
0,6		11	0	99)	22		17	4	8	260		
Conductividad 20° (µS/cm)		co	3 1	NO 3		NO2)	NH4	Р	04	SiO2		
607		0		4		0,00	1	0,00	0,	.00	12,2		
pH (Unid. pH) 7,17		Me			Meta	etales (μg/L):							
D C 4000 /m =//)	Ag	ΑI	As		Boro		За	Ве		Cd	Co		Cr
R. S. 180° (mg/L) 444,4			0,2							< 0,2	!		0,41
D C 0000 (- #)	Cu	Fe	Hg		Li	r	Vi n	Мо		Ni	Pb		Sb
R. S. 260° (mg/L)	< 0,2	< 15	< 0,5				0,53				< 0,2	2	
	Se		Sr	Ta		Th	TI		U		V Z	Zn	
	1,18	3									3	,04	
La Jefe de Laboratorio	:		RECIE	BIDO	D.A	.S.	3.0			V	° B°		
	<u> </u>									••••••	***************************************	•••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0083
Referencia de Laboratorio	4814-11
Referencia de envio (Ident. de la muestra	IGME-11
Fecha de entrega a Laboratorio	04/03/2014
Proyecto Nº	35300310

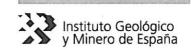
INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	N° Re 2228	3.0	F. de toma Minutos 28/02/2014		17/03/20	
	<u></u>	E	specíficos (*):		.:	
Fluoruro (mg/L)	CN (mg/L)	Sulfuros (mg/L)	Fenoles (mg/l	L) Deterge	entes (mg/L)	CO2 (mg/L)
<0,5 Materias en susper	<0,01 nsión (mg/L)	Dureza (mg/L)	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro croma	itogr. iónica (mg/L) CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total						
		lsó	topos (Bq/L):			
	Radalfa	Erradalfa	Radbeta E	rradbeta	Titrio	
La Jefe de La	aboratorio:	RE	CIBIDO D.A.S.		V° B	90

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0091			
Referencia de Laboratorio	4823-1			
Referencia de envio (Ident. de la muestra	IGME-1			
Fecha de entrega a Laboratorio	06/03/2014			
Proyecto N°	35300310			

INFORME DE DETERMINACIONES REALIZADAS


Nombre Muestra NACIMIENTO SAONA	Nº Registro		F. de toma 05/03/2014	Minu	tos	Profundida		ninación 3/2014	Num. Muestr
Físico-Químicos (*):				M	ayorita	rios (mg/L)	:		
Oxidab. al MnO4K (mg/L)		Na	к	Ca	Mg	CI	SO ₄	нсо 3	
0,5		33	2	570	89	41	1476	195	
Conductividad 20° (µS/cm)		CO3	NO	3	NO2	NH4	PO4	SiO2	
3420		0	40		0,00	0,00	0,00	47,9	
pH (Unid. pH) 6,62					Metal	es (µg/L):			
	Ag	Al	As	Boro	В	а Ве	Cd	Co	Cr
R. S. 180° (mg/L) 2489,6			1,29				< 0,8		0,66
D 0 0000 (//)	Cu	Fe	Hg	Li	М	n M o	Ni	Pb	Sb
R. S. 260° (mg/L)	< 0,8	< 60	< 2			< 2		< 0,8	
	Se		Sr	Та	Th	TI	U V	/ Zn	ì
	3,03	3						4,3	37
La Jefe de Laboratorio	:		RECIBIE	00 D.A	S.		V°	B°	
	>							••••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

OBSERVACIONES:

NO SE APRECIAN SULFUROS

Informe N°	14/0091
Referencia de Laboratorio	4823-1
Referencia de envio (Ident. de la muestra	IGME-1
Fecha de entrega a Laboratorio	06/03/2014
Proyecto N⁰	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra NACIMIENTO SAO		egistro F. de tor 05/03/20		Profundidad	F. Termina 17/03/20		
		Esp	ecíficos (*):				
Fluoruro (mg/L)	CN (mg/L) <0,01	Sulfuros (mg/L)	Fenoles (mg/L)	Detergen	tes (mg/L)	CO2 (mg/L)	
Materias en suspensión (mg/L)		Dureza (mg/L)	COT (mg/L)	CT (mg/L)	IC (mg/L)	Bromato (mg/L)	
Bromuro (mg/L)	N org (mg/L)	Cloruro cromato	gr. iónica (mg/L)	Cl/Br	Color (UC)	Turbidez (UNF)	
Nitrógeno Total							
		Isóto	pos (Bq/L):				
	Radalfa	Erradalfa R	tadbeta Erra	adbeta T	itrio		
La Jefe de La	boratorio:	REC	BIDO D.A.S.		V° B°		

(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

OBSERVACIONES:

NO SE APRECIAN SULFUROS

ANEXO III: RESULTADOS ANALÍTICOS - OCTUBRE DE 2014

Informe N°	14/0324
Referencia de Laboratorio	5109-1
Referencia de envio (Ident. de la muestra	VALENCIA-1
Fecha de entrega a Laboratorio	28/10/2014
Proyecto Nº	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registro 222580012		F. de toma Minutos Profe 22/10/2014		Profundid	F. Terminación 01/12/2014		Num. Muestra 1	
Físico-Químicos (*):				M	ayorita	arios (mg/L	_):		
Oxidab. al MnO4K (mg/L)		Na 10	K 9	Ca 107	Mg 75	CI 43	SO₄ 113	HCO 3	
Conductividad 20° (µS/cm)		CO :	3 NO 200	0.00	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 14,7	
pH (Unid. pH) 7,87		Metales (μg/L):							
R. S. 180° (mg/L)	Ag	Al	As	Boro) В	a Be	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	N	in Mo	o Ni	Pb	Sb
	Se		Sr	Га	Th	TI	U	V Zr	1
La Jefe de Laboratorio:			RECIBIDO D.A.S.				V° B°		

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324
Referencia de Laboratorio	5109-2
Referencia de envio (Ident. de la muestra	VALENCIA-2
Fecha de entrega a Laboratorio	28/10/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regista 22258001		F. de toma 22/10/2014	Minu	tos	Profundida		rminación 12/2014	Num. Muest 2
Físico-Químicos (*):			Mayoritarios (mg/L):						
Oxidab. al MnO4K (mg/L)		Na 12	к 3	Ca 272	Mg 36	CI 26	SO₄ 604	HCO ₃	2
0,7		12	3	212	30		004		
Conductividad 20° (µS/cm)		CO	3 NC	3	NO2	NH4	PO4	SiO2	
1352		0	27		0,00	0,00	0,00	14,6	
pH (Unid. pH) 7,72		Metales (μg/L):							
R. S. 180° (mg/L)	Ag	Al	As	Boro	Ва	в Ве	Cd	Со	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	Mı	n M o	Ni	Pb	Sb
	Se		Sr	Та	Th	TI	Ü	V Zr	ì
La Jefe de Laboratorio	:		RECIBIE	00 D.A	.S.			√° B°	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324				
Referencia de Laboratorio	5109-3				
Referencia de envio (Ident. de la muestra	VALENCIA-3				
Fecha de entrega a Laboratorio	28/10/2014				
Proyecto Nº	35300310				

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registe 23272001		F. de toma 22/10/2014	Minu	tos	Profundida		minación 12/2014	Num. Muestra 3
Físico-Químicos (*):				M	ayorita	rios (mg/L):		
Oxidab. al MnO4K (mg/L) 0,6		Na 7	K 0	Ca 180	Mg 12	CI 34	SO ₄ 208	HCO ₃	
Conductividad 20° (µS/cm)		co :	3 NO 70	3	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 15,5	
pH (Unid. pH) 7,72					Meta	les (µg/L):			
R. S. 180° (mg/L)	Ag	AI	As	Boro) В	a Be	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	М	n Mo) Ni	Pb	Sb
	Se		Sr	Га	Th	ΤI	U	V Zr	1
La Jefe de Laboratorio	:		RECIBID	00 D.A	S.		V	/° В°	
	7								

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324					
Referencia de Laboratorio	5109-4					
Referencia de envio (Ident. de la muestra	VALENCIA-4					
Fecha de entrega a Laboratorio	28/10/2014					
Proyecto N°	35300310					

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regis 2226400		F. de toma 22/10/2014		itos	Profundida		rminación 12/2014	Num. Muest
Físico-Químicos (*):				M	layoritar	ios (mg/L)):		
Oxidab. al MnO4K (mg/L)		Na 13	K I	Ca 29	Mg 6	CI 31	SO₄ 36	HCO ₃	
Conductividad 20° (µS/cm) 259		co	3 N	O ₃	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 0,5	
pH (Unid. pH) 7,85					Metale	es (µg/L):			
R. S. 180° (mg/L)	Ag	Al	As	Boro	в Ва	Ве	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	Mr	n Mo	Ni	Pb	Sb
	s	ie	Sr	Та	Th	TI	U	V Zr	1
La Jefe de Laboratorio):		RECIBI	DO D.A	s.		\	/° В°	
	7						•••••	•••••••••••	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324				
Referencia de Laboratorio	5109-5				
Referencia de envio (Ident. de la muestra	VALENCIA-5				
Fecha de entrega a Laboratorio	28/10/2014				
Proyecto N°	35300310				

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registro 212640004		. de toma 2/10/2014	Minu	itos	Profundid		erminación /12/2014	Num. Muestra 5
Físico-Químicos (*):				M	ayorita	arios (mg/L	.):		
Oxidab. al MnO4K (mg/L) 0,9		Na 3	K 10	Ca 266	Mg 34	CI 49	SO ₄ 580	нсо _з	
Conductividad 20° (µS/cm)		CO3	NO 76	3	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 14,9	
pH (Unid. pH) 7,94					Meta	les (µg/L):			
R. S. 180° (mg/L)	Ag	Al	As	Boro) E	Ba Be	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	N	/In Mo	o Ni	Pb	Sb
	Se	:	Sr 7	Га	Th	TI	U	V Zr	1
La Jefe de Laboratorio	:		RECIBID	O D.#	\.S.			V° B°	
							3111111111111		

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324					
Referencia de Laboratorio	5109-6					
Referencia de envio (Ident. de la muestra	VALENCIA-6					
Fecha de entrega a Laboratorio	28/10/2014					
Proyecto Nº	35300310					

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registro 222770003		de toma /10/2014	Minu	tos	Profundida		minación 2/2014	Num. Muestra
Físico-Químicos (*):				М	ayorita	rios (mg/L)	:		
Oxidab. al MnO4K (mg/L)	N 19	la	K	Ca	Mg	CI	SO ₄	HCO ₃	
2,2	1	9	3	29	66	219	39	35	
Conductividad 20° (µS/cm)		CO3	NO	3	NO2	NH4	PO4	SiO2	
813		0	0		0,00	0,00	0,00	0,3	
pH (Unid. pH) 7,76					Metal	es (µg/L):		S	
R. S. 180° (mg/L)	Ag A	AI	As	Boro	В	а Ве	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	М	n M o	Ni	Pb	Sb
	Se	Sı	,	Га	Th	TI	U	V Zn	
La Jefe de Laboratorio			RECIBIE	O D.A	s.		V	° B°	

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324					
Referencia de Laboratorio	5109-7					
Referencia de envio (Ident. de la muestra	VALENCIA-7					
Fecha de entrega a Laboratorio	28/10/2014					
Proyecto N°	35300310					

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Regist 22281000		F. de toma 23/10/2014	Minu	itos	Profundida		rminación 12/2014	Num. Muestra 7
Físico-Químicos (*):				M	ayorita	rios (mg/L	.):		
Oxidab. al MnO4K (mg/L)		Na 7	K l	Ca 41	Mg 27	CI 9	SO₄ 138	нсо _з	
Conductividad 20° (µS/cm) 423		co :	3 NO) ₃	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 0,2	
рН (Unid. рН) 7,66					Metal	les (µg/L):			
R. S. 180° (mg/L)	Ag	AI	As	Boro	э В	a Be	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	M	n Mo	o Ni	Pb	Sb
	Se	е	Sr	Та	Th	TI	U	V Zn	1
La Jefe de Laboratorio	:		RECIBII	DO D.A	\.S.		\	/° В°	
Jh.	>								

(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324					
Referencia de Laboratorio	5109-8					
Referencia de envio (Ident. de la muestra	VALENCIA-8					
Fecha de entrega a Laboratorio	28/10/2014					
Proyecto N°	35300310					

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Registr 21283000		F. de toma 23/10/2014	Minu	itos	Profundid		rminación 12/2014	Num. Muestra 8
Físico-Químicos (*):				M	ayorita	arios (mg/L	.):		
Oxidab. al MnO4K (mg/L)		Na 78	K 9	Ca 440	Mg 272	CI 278	SO₄ 1590	HCO ₃	
Conductividad 20° (µS/cm) 4380		co: 0	3 NO 46	3	NO2 0,82	NH4 0,59	PO4 0,00	SiO2 15,8	
pH (Unid. pH) 7,57					Meta	iles (μg/L):			
R. S. 180° (mg/L)	Ag	Al	As	Boro) Е	Ba Be	Cd	Co	Cr
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	N	∕in Mo	o Ni	Pb	Sb
	Se		Sr	Га	Th	TI	U	V Zr	1
La Jefe de Laboratorio	:		RECIBID	00 D.A	S.		١	/° В°	
	-						***************************************		

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324
Referencia de Laboratorio	5109-9
Referencia de envio (Ident. de la muestra	VALENCIA-9
Fecha de entrega a Laboratorio	28/10/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra	Nº Reg 212820		F. de ton 23/10/20		utos	Profundida		rminación 12/2014	Num. Muest 9	
Físico-Químicos (*):				N	layoritar	rios (mg/L)):			
Oxidab. al MnO4K (mg/L) 0,6		Na 42	к 3	Ca 152	Mg 38	CI 62	SO₄ 116	HCO 3		
Conductividad 20° (µS/cm)		c c		NO ₃	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 27,1		
pH (Unid. pH) 7.52		Metales (μg/L):								
R. S. 180° (mg/L)	Ag	Al	As	Bor	o Ba	в Ве	Cd	Co	Cr	
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	Mı	n M o	Ni	Pb	Sb	
		Se	Sr	Та	Th	ТІ	U	V Zr	1	
La Jefe de Laboratorio	:		RECII	BIDO D.	A.S.		,	√° B°		
July 1	>									

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	14/0324
Referencia de Laboratorio	5109-10
Referencia de envio (Ident. de la muestra	VALENCIA-10
Fecha de entrega a Laboratorio	28/10/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra Nacimiento Saona	Nº Regis	stro	F. de tom 15/10/20		utos	Profundid		erminación /12/2014	Num. Muest		
Físico-Químicos (*):				N	/layorita	arios (mg/L	-) :				
Oxidab. al MnO4K (mg/L) 0,5		Na 30	K 2	Ca 560	Mg 82	CI 44	SO ₄	нсо _з			
Conductividad 20° (µS/cm) 3420		co :		NO 3 8	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 19,6			
pH (Unid. pH) 7,63		Metales (μg/L):									
R. S. 180° (mg/L)	Ag	Al	As	Bor	о В	a Be	Cd	Co	Cr		
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	N	In Mo	o Ni	Pb	Sb		
	\$	Se	Sr	Та	Th	ΤI	U	V Zr	1		
La Jefe de Laboratorio	:		RECIE	BIDO D.	A.S.			V° B°	-		
	>										

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	14/0324
Referencia de Laboratorio	5109-11
Referencia de envio (Ident. de la muestra	VALENCIA-11
Fecha de entrega a Laboratorio	28/10/2014
Proyecto N°	35300310

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra Pozo el Marques	Nº Registre		F. de toma 15/10/2014	Minu	tos	Profundida	M 8 8 8/3/3	rminación 12/2014	Num. Muest			
Físico-Químicos (*):	[Mayoritarios (mg/L):										
Oxidab. al MnO4K (mg/L) 0,5		Na 31	K 2	Ca 450	Mg 82	CI 49	SO ₄	HCO ₃				
Conductividad 20° (µS/cm) 3050		CO3	NC 39	3	NO2 0,00	NH4 0,00	PO4 0,00	SiO2 21,3				
pH (Unid. pH) 7,68			Metales (μg/L):									
R. S. 180° (mg/L)	Ag	Al	As	Boro	о Ва	a Be	Cd	Co	Cr			
R. S. 260° (mg/L)	Cu	Fe	Hg	Li	Mı	n Mo	Ni	Pb	Sb			
	Se		Sr	Та	Th	TI	U	V Zn	Ľ			
La Jefe de Laboratorio):		RECIBIE	00 D.A	S.		V	/° В°				
(Ille	/											

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

ANEXO IV: ANÁLISIS QUÍMICOS DE LAS AGUAS DE ABASTECIMIENTO

March Marc	MUNICIPIO	COORD X (ETRS 89)	COORD Y (ETRS 89)	ORIGEN DEL AGUA	FECHA TOMA	CI libre residual "in situ" (mg/l)	SO4 (mg/l)	NO3 (mg/l)	NO2 (mg/l)	NH4 (mg/l)	Oxidabilidad (mg/l O ₂)	Conductividad 20° (μS/cm)	рН	Turbidez (UNF)	Fluoruro (mg/l)	Clostridium perfringens (ufc/100 ml)	Bacterias coliformes (ufc/100 ml)	Enterococos intestinales (ufc/100 ml)	Escherichia coli (ufc/100 ml)
Marie Mari		SPREAMON NOTES	E10000 00 0000				66		30000000			10000000		20,000		0	0	0	0
Column			0.0000000000000000000000000000000000000	0000 0007 1000	100-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		646	1		-								- 4	
Marie Mari	Control of the Contro	70000000000													117975				
March Marc		000000000	200000000000000000000000000000000000000	20100 Bac Con 11000			777	37.000	1955.0352	250532500	100000	5457755	0.500	9.20,000	Controller	100			8 7
March Marc	ATALAYA DE CAÑAVATE	564313	4374532	Subterráneo	02/09/2014	0,1	202	24	< LC	< LC	< LC	788	7,5	< LC	0,33	< 1			
Company Comp	V							•			1	1999000							
Column		100000000000	10000000000				55		255555			133673				_			
Marie Mari									100000000		15 15 500		17851530	2000	507,700.00		14	< 1	< 1
Color Colo					200000000000000000000000000000000000000		813					00000000	2000			300000	0	0	0
Column C	CASAS DE BENITEZ	575081	4357171	Subterráneo	06/10/2014	0		10	< LC	< LC	< LC	672	7,6	0,2	< LC	63	25	6	2
Columbia	CASAS DE FERNANDO ALONSO		4355849	?	18/08/2014	0,69	56	118	< LC	< LC	< LC	776	7,6	0,2	< LC				
Marie Mari	Land to the control of the control o			1989			400		0.03000			S S S S S S S S S S S S S S S S S S S	-	100000	000,700,000	< 1			
Column		0.000000					180	1000000		-	-	00000000	0.000			< 1	< 1	< 1	< 1
March 1985		9-220-00-00-00-0	200000000000000000000000000000000000000	100000000000000000000000000000000000000			1.831			Carlotteria.				22.00	4000000				
Second 1990 1990 1990 1990 1990 1990 1990 11	EL CAÑAVATE	559853	4377239		02/09/2014		149	27	< LC	0,1	0,6	786	7,9	0,1		< 1			
Marie Mari	EL HITO	524401	4412154	Subterráneo	09/09/2014	0,3		44	< LC	< LC	< LC	610	7,7	0,3	0,31	< 1			
MATINITIAN STATE		100000000000000000000000000000000000000	111 100 100 100 100 100 100 100 100 100		AT CONTROL OF THE CON													2000	
March Marc		VII.00-00000000		200000000000000000000000000000000000000			443				2000000	10000000				-	93	0	
March Marc								+		-	-		1				1		
MINE 1808		5.5.5.005	600000000000000000000000000000000000000		7.00.00.00.00.00.00.00.00.00		584	50000	0.000	5555-5		585,8100	30700	202005	100000	0	0	0	0
Martinopart 1900		- Constanting		400000000000000000000000000000000000000	A CONTRACTOR OF THE SECOND ST				0.000		-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100000						
Column C		100000000000000000000000000000000000000		200000000000000000000000000000000000000	1,100,000,000,000,000,000,000						-	700000000	900000						
Columba-Seculary Secular Secul					-							+	-			< 1	< 1	< 1	< 1
Maria Carl Lando 1980 19	CONTRACTOR STATE OF THE STATE O	100000000000000000000000000000000000000				2005000	285			10000		1000000	1037/00	1075,0		< 1			
Marie Mari		(DASSESSED CO.)	CONTRACTOR OF THE PROPERTY OF		[] [] [] [] [] [] [] [] [] []	47 (15° 40) (17')		75.75.0	2077072			0.0000000000000000000000000000000000000	50,570	30200		579/28	1		
March Marc		201.00000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									200000000000000000000000000000000000000	-	-		_	< 1	< 1	< 1
March Solid Soli	MONTALBO	528180	4414480	Subterráneo	09/09/2014	0,3	895	23	< LC	< LC	< LC	1.719	7,8	0,1	0,7	< 1			
PACINITIES 1.5			800000000000000000000000000000000000000	7	V 07 10 10 10 10 10 10 10 10 10 10 10 10 10							2000000	205000		1000000				
PRIMENSE 30198			1. The Property Control of the	201700000000000000000000000000000000000	87/31/2005/04/2017/2017/2017/2017		////		1.10.40000000	-		00000000	35-0-3		1,742*1,0500				
PRINCE 1980 1980 1980 1980 1980 1980 1980 1980				1000	Va. 100 - 10					-			10000				-	0	0
Procession Pro	VACON IN NOVA SAME VIGOR	10010000-00000					415					500 m 200 / 100 m 200	10000000	-	0,44				-
Part	PINAREJO	549283	4385310	Subterráneo	02/09/2014	0,3		21	< LC	0,11	< LC	651	7,7	0,4	0,25	< 1			
MAILANE AL MANISHAM Market	POZOAMARGO	569363	4357640	Subterráneo	06/10/2014	0,2		55	< LC	< LC	< LC	719	7,9	0,1	< LC	< 1			
MARIA DE MARO 53061 480917 50064 500					A STATE OF THE PROPERTY OF THE		250					100000000		100000					
Second			20.00-0.00/0.00				075				-	702-07-00-0			-	< 4	< 1	< 4	< 1
SARCESATRAGETERA 51230 516720												-				0	40	0	0
ANY LANGE COS LLANOS 59490				(32)			77.00.5			0.000000		1650,000,000	7000000			0		1/201	
SAMPLE S	SAELICES	516736	4418944	Subterráneo	09/09/2014	> 1,5		25	< LC	< LC	< LC	499	7,8	0,1	< LC				
Selection Sele						100								-					
SIBANE 156174 1402285 150000 1402285 1500000 1402285 1500000 1402285 1500000 1402285 1500000 1402285 15000000 1402285 150000000 1402285 1500000000 1402285 150000000000 1402285 150000000000000000000000000000000000		0.000,000,000	0000000000				375				-	200000000000000000000000000000000000000		20.00	2.0000				
TARRACCON 449936 4429933 Suberraine 041022014 0						100000000	F/F		-				Waste	20000	30-200000000000000000000000000000000000	870			
Commission Com				T Myssississis			460					1000000				-	<1	< 1	< 1
Special Control Special Specia	TEBAR	571808	4372359	Subterráneo	06/10/2014	0		35	< LC	< LC	< LC	559	7,7	0,1	0,29	1	3	<1	< 1
TRESJUNCOS 521062 4394543 Suberrane 0 90902014 0,6 19 19 < LC < LC	A SECURE AND A SEC					1000						-		1000	2500023	_			
TRIBALDOS 568717 4424608 Superficial 040982014 0,5 266* < LC < L	Company and Company of the Company o				1000 distribution (00:00)			100000	See See See	0000000			257000		5.78 (0.50)	0			
UCLES 511907 425573 Subterráneo 04/08/2014 0,6 C 24 < LC < L	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	NO STATE OF COLUMN			0.00 A COLOR OF A COLOR OF A COLOR		246*		12 C 12 M 10 M					-					
VILLAESCUSA DE HARO \$57983 4383138 Subterráneo 09/09/2014 0,6 314 5 <1C				100 - 100 -	V /								-	-					
VILLAMAYOR DE SANTIAGO 506264 4397677 Subterrâneo 20807/2014 0,3 35 <1C <1C <1C <1C <1C <1C <1C <1	VELLISCA	515869	4442222	Superficial	04/08/2014	0,5	< LC	< LC	< LC	< LC	< LC	539	7,6	0,1	< LC				
VILLAMAYOR DE SANTIAGO 506264 4397677 Subterráneo 28/07/2014 0,3 35 < LC < LC < LC < LC 7,7 0,4 0,27 < 1 VILLAR DE CANAS 537388 4403161 Subterráneo 16/09/2014 0,2 429 48 < LC 0,1 < LC 1.198 7,6 0,2 0,39 < 1				CONTROL OF THE PROPERTY OF THE	11,2000,000,000,000,000			0,000	20000000	505.5550	100000000000000000000000000000000000000	5000000	28.04	1000000	100.000000				
VILLAR DE CAÑAS 537358 4403161 Subterrâneo 16/09/2014 0,2 429 48 < LC 0,1 < LC 1.198 7,6 0,2 0,39 < 1 VILLAR DE LA ENCINA 541003 4387581 ? 09/09/2014 0,6 21 < LC		0.1100,000 0.700	-	And the second s	1,000,000,000,000,000,000,000	-	314	2000	100000000000000000000000000000000000000				20.000			- 4			
VILLAR DE LA ENCINA 541003 4387581 ? 09/09/2014 0,6 21 < LC < LC < LC 672 7,6 0,1 0,29 VILLAREJO DE FUENTES 526094 4404348 Subterráneo 09/09/2014 0 19 < LC			99/2016/09/2019	Property Control of the Control of t		0.0000	429				to the second state of	600m000m0mm	5000000	100000					
VILLAREJO DE FUENTES 526094 4404348 Subterráneo 09/09/2014 0 19 < LC 0,12 0,7 390 8,2 0,1 0,21 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	A VALUE OF THE PARTY OF THE PAR					-	120												
VILLARRUBIO 509114 4421619 Superficial 21/07/2014 0,5 264 < LC < LC 0,12 1 767 8 0,9 0,21			VALUE	Subterráneo				310000						5-02-0		< 1	< 1	< 1	< 1
ZAFRA DE ZÁNCARA 537808 4415810 Subterráneo 16/09/2014 0,3 349 20 < LC 0,11 < LC 1.018 7,6 0,3 0,37 < 1 Criterios sanitarios de la calidad del agua de consumo humano (Real Decreto 140/2003 de 7 de febrero) 1 250 50 0,5 0,5 5 2500 6,5-9,5 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000-000-000000		and the factoring of the factoring		-					-				100000000000000000000000000000000000000				
Criterios sanitarios de la calidad del agua de consumo humano (Real Decreto 140/2003 de 7 de febrero) 1 250 50 0,5 0,5 5 2500 6,5-9,5 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					V. 0.000 (100 V. 0.000 V. 0.000)	-		0.00001				30-20-20-20	10077700	9577195		2.2			
AGUA APTA PARA EL CONSUMO AGUA APTA PARA EL CONSUMO (incumple el artículo 10.2 del RD 140/2003, de 7 de febrero, al no tener la concentración adecuada de desinfectante residual. El cloro libre debe estar Comprendido entre 0.2 y 1 mg/L) AGUA APTA PARA EL CONSUMO CON ALGÚN ELEMENTO EXCEPCIONADO POR LA AUTORIDA SANITARIA Todas las muestras analizadas se han tomado en puntos de las redes de distribución de los municipios indicados							00.00	120000						0,3					
AGUA APTA PARA EL CONSUMO (incumple el artículo 10.2 del RD 140/2003, de 7 de febrero, al no tener la concentrac ón adecuada de desinfectante residual. El cloro libre debe estar comprehendido entre 0,2 y 1 mg/L) AGUA APTA PARA EL CONSUMO CON ALGÚN ELEMENTO EXCEPCIONADO POR LA AUTORIDA SANITARIA Todas las muestras a nalizadas se han tomado en puntos de las redes de distribución de los municipios indicados	Criterios sanitarios de la calidad	del agua de consumo	humano (Real Decreto	140/2003 de 7 de	febrero)	1	250	50	0,5	0,5	5	2500	6,5-9,5		1,5	0	0	0	0
AGUA APTA PARA EL CONSUMO (incumple el artículo 10.2 del RD 140/2003, de 7 del febrero, al no tener la concentración adecuada de desinfectante residual. El cloro libre debe estar comprendido entre 0.2 y 1 mg/L) AGUA APTA PARA EL CONSUMO CON ALGÚN ELEMENTO EXCEPCIONADO POR LA AUTORIDA SANITARIA Todas las muestras analizadas se han tomado en puntos de las redes de distribución de los municipios indicados			AGUA A	PTA PARA EL COI	NSUMO														
AGUA APTA PARA EL CONSUMO CON ALGÚN ELEMENTO EXCEPCIONADO POR LA AUTORIDA SANITARIA Todas las muestras analizadas se han tomado en puntos de las redes de distribución de los municipios indicados	AGUA APTA PARA EL CONSUMO (incl	umple el artículo 10.2 d	del RD 140/2003, de 7 de	febrero, al no te	ner la concentrac	ón adecuada de c	desinfectante res	dual. El cloro lib	e debe estar		* punto:	s que superan frec	uentemente el lí	mite de la Reglam	entación Técnico	Sanitaria para ag	guas de consumo	humano	
Todas las muestras an alizadas se han tomado en puntos de las redes de distribución de los municipios indicados		ACUA ARTA RARA				LA ALITORIS A CO	NITAD: 4												
		AGUA APTA PARA EL	. CONSUMO CON ALGUI	N ELEMENTO EXC	EPCIONADO POR	LA AUTORIDA SAI	NITARIA			1	Tod	as las muestras a	nalizadas se han	tomado en puntos	de las redes de	distribución de los	s municipios indic	ados	
			AGUA NO	APTA PARA EL C	ONSUMO														